T.C. Mİllî Eğİtİm BakanlIğI
ORDU / FATSA - Fatsa Fen Lisesi

Doç. Dr. Kemal EREN - Matematik Öğretmeni

ÖZGEÇMİŞ VE ESERLER LİSTESİ

ÖZGEÇMİŞ

Adı Soyadı: Kemal EREN

Doğum Tarihi: 02.10.1981

İletişim: 05057726525/kemaleren52@gmail.com

Öğrenim Durumu:

Derece Bölüm/Program Üniversite Yıl

Lisans

Matematik Öğrt. Böl.

Ondokuz Mayıs

Üniversitesi 1997–2001

Y. Lisans FBE Matematik EABD Sakarya Üniversitesi 2010–2012

Doktora FBE Matematik EABD Sakarya Üniversitesi 2015–2019

Doçent Doktor Matematik/Geometri Üniversitelerarası Kurul

Başkanlığı

2023-…

Yüksek Lisans Tez Başlığı (özeti ekte) : Timelike Tanjant Açılabilir Yüzeyler ve

Bonnet Yüzeyler

Tez Danışmanı: Prof. Dr. Soley ERSOY

Doktora Tezi/S.Yeterlik Çalışması/Tıpta Uzmanlık Tezi Başlığı ( özeti ekte) :

Lorentz Düzleminde Burmester Teorisi

Tez Danışmanı: Prof. Dr. Soley ERSOY

Görevler:

Görev Unvanı Görev Yeri Yıl

Matematik Öğretmeni Gölköy Karahasan Ortaokulu, Ordu 2001–2004

Matematik Öğretmeni Kabataş Osman Özyurt Ortaokulu, Ordu 2004–2006

Matematik Öğretmeni Kabataş Anadolu Lisesi, Ordu 2006–2014

Matematik Öğretmeni Fatsa Lokman Hekim Mesleki ve Teknik

Anadolu Lisesi, Ordu

2014-2016

Matematik Öğretmeni Fatsa Fen Lisesi, Ordu 2016-...

A. ARAŞTIRMA VE YAYIN ETKİNLİKLERİ

A1. Makaleler

A1.1 Uluslararası hakemli dergilerde yayımlanan

A1.1. SCI (Science Citation Index) Expanded indekslerince taranan dergilerde

yayımlanan

A1.1.1.Tam metin özgün makale

A1.1.1.1. Eren K., Kosal, H.H., “Evolution of Space Curves and the Special Ruled

Surfaces with Modified Orthogonal Frame”, AIMS Mathematics, 5(3), 2027– 2039, (2020).

(SCI-E. Q1)

A1.1.1.2. Eren K., Ersoy, S., “Characterizations of Tzitzeica Curves Using Bishop

Frames.” Math Meth Appl Sci. 2022; 45(18), 12046-12059.

https://doi.org/10.1002/mma.7483 (SCI-E. Q1)

A1.1.1.3. Eren K., Yıldız, ÖG, Akyiğit, M. “Tubular surfaces associated with framed base

curves in Euclidean 3-space.” Math Meth App Sci. 2022; 45(18), 12110-12118.

https://doi.org/10.1002/mma.7590 (SCI-E. Q1)

A1.1.1.4. Y. Li, K. Eren, K. H. Ayvacı, S. Ersoy. “Simultaneous characterizations of

partner ruled surfaces using Flc frame”. AIMS Mathematics, 2022, 7(11): 20213-20229.

doi: 10.3934/math.20221106 (SCI-E. Q1)

A1.1.1.5. Y. Li, K. Eren, K. H. Ayvacı, S. Ersoy. “The developable surfaces with pointwise

1-type Gauss map of Frenet type framed base curves in Euclidean 3-space”. AIMS

Mathematics, 2023, 8(1): 2226-2239. doi: 10.3934/math.2023115 (SCI-E. Q1)

A1.1.1.6. Y. Li, K. Eren, S. Ersoy (2023). On simultaneous characterizations of

partner-ruled surfaces in Minkowski 3-space. AIMS Mathematics, 2023, 8(9):

22256-22273. doi: 10.3934/math.20231135 (SCI-E. Q1)

A1.1.1.7. N. Popovic, K. Eren, A. Savic, S. Ersoy (2023). Framed curve families ınduced

by the coupled dispersionless type equations: real and complex, Mathematics, 2023,

11(16), 3531. doi: 10.3390/math11163531 (SCI-E. Q1)

A1.1.1.8. K. Eren, K. Yesmakhanova, S. Ersoy, R. Myrzakulov, “Involute evolute curve

family induced by the coupled dispersionless equations”, Optik, Volume 270, 2022,

169915, https://doi.org/10.1016/j.ijleo.2022.169915 (SCI-E. Q2)

A1.1.1.9. Eren K., Ersoy, S., “Revisiting Burmester theory with complex forms of

Bottema’s instantaneous invariants”, Complex Variables and Elliptic Equations, 2017, Vol.

62, No. 4, 431–437. (SCI-E. Q3)

A1.1.1.10. Eren K., Ersoy, S., “Complex Coupled Dispersionless Equations in Minkowski

3- Space. “Complex Variables and Elliptic Equations, DOI:

10.1080/17476933.2022.2097665 (SCI-E. Q3)

A1.1.1.11. K. Eren. “Forming coupled dispersionless equations of families of Bertrand

curves”. Turkish Journal of Mathematics, 2023, 47(1): 87-97.

https://doi.org/10.55730/1300-0098.3347 (SCI-E. Q3)

A1.1.1.12. Eren K., “Motion of Inextensible Quaternionic Curves and Modified Korteweg

de Vries Equation”. Analele Stiintifice ale Universitatii Ovidius din Constanta, Math. Series,

30(2), 91-101, 2022. (SCI-E. Q4)

A1.1.1.13. Eren K., “Geometry of Coupled Dispersionless Equations with Mannheim

Curves”. Analele Stiintifice ale Universitatii Ovidius din Constanta, Math. Series, 31(3),

2023. (SCI-E. Q4)

A1.2. SCI (Science Citation Index)- Expanded, SSCI (Social Science Citation

Index), A&HCI (Arts and Humanities Citations Index) dışındaki indeksler

tarafından taranan dergilerde yayımlanan

A1.2.1. Tam metin özgün makale

A1.2.1.1. Ersoy, S., Eren K., “Timelike Tangent Developable Surfaces and Bonnet

Surface”, Abstract and Applied Analysis, Volume 2016, Article ID 6837543, 7 pages.

(SCOPUS)

A1.2.1.2. Eren K., Ersoy, S., “Burmester theory in Cayley–Klein planes with affine

base”, J. Geom. 109 (2018), no. 3, Art. 45, 12 pp. (ESCI)

A1.2.1.3. Eren K., Ersoy, S., “Cardan Positions in the Lorentzian Plane”, Honam Math.

J. 40 (2018), no. 1, 187–198. (ESCI)

A1.2.1.4. Eren K., Ersoy, S., “A Comparison of Original and Inverse Motion in

Minkowski Plane”, Applications and Applied Mathematics:An International Journal. 40

(2019), Special Issue No. 5, 56–67. (ESCI)

A1.2.1.5 A. Kelleci, Eren K. “On Evolution of Some Associated Type Ruled Surfaces.”

Math. Sci. Appl. E-Notes, 8(2), 178-186, (2020). (TR-DİZİN)

A1.2.1.6. Eren K., “On the Harmonıc Evolute Surfaces of Tubular Surfaces in Euclıdean

3-Space.” Journal of Science and Arts, Year 21, No. 2(55), pp. 449-460, (2021) (ESCI)

A1.2.1.7. Akyiğit M., Eren K., Kösal H.H, “Tubular Surfaces with Modified Orthogonal

Frame”, Honam Mathematical Journal, 43(3), 453-463, 2021, (ESCI)

A1.2.1.8. Kösal H.H, Eren K., “Numerical Algorithm for Solving General Linear Elliptic

Quaternionic Matrix Equations”, Fundamental Journal of Mathematics and Applications,

4(3), 180- 186, 2021. (TR-DİZİN)

A1.2.1.9. Şenyurt S., Eren K., “Some Smarandache Curves Constructed by a Spacelike

Salkowski Curve with Timelike Principal Normal”. Punjab University Journal of

Mathematics, 53(9),679-690, 2021. (ESCI)

A1.2.1.10. Eren K., “New Representation of Hasimoto Surfaces with the Modified

Orthogonal Frame”, Konuralp Journal of Mathematics, 10(1), 69-72, 2022.

(MATHSCİNET )

A1.2.1.11. Şenyurt S. Eren K. Ayvacı K. H., “A Study on Inextensible Flows of

Polynomial Curves with Flc Frame”, Applications and Applied Mathematics: An

International Journal (AAM), 17(1),123-133,2022. (ESCI)

A1.2.1.12. Eren, K., K. H. Ayvaci, and S. Senyurt. “On Characterızatıons Of Spherıcal

Curves Usıng Frenet Lıke Curve Frame.” Honam Mathematical Journal 44, no. 3

(September 1, 2022): 391–401. doi:10.5831/HMJ.2022.44.3.391. (ESCI)

A1.2.1.13. Eren, K. “A Study Of The Evolution Of Space Curves With Modified

Orthogonal Frame In Euclidean 3-Space.” Applied Mathematics E-Notes, 22(2022), 281-

286. (ESCI)

A1.2.1.14. S. Senyurt, K. Eren “On Ruled Surfaces with a Sannia Frame in Euclidean 3-

space.” Kyungpook Mathematical Journal 2022; 62(3): 509-531. (ESCI)

A1.2.1.15. K. Eren, K.H. Ayvaci, S. Senyurt. On Ruled Surfaces Constructed by the

Evolutıon of a Polynomıal Space Curve J. of Science and Arts 2023; 23(1): 77-90. (ESCI)

A1.2.1.16. K Eren, S.Ersoy, On Curve Pairs of Tzitzeica Type, Advances and Applications

in Mathematical Sciences, 22(9), 2009-2021, 2023, (ESCI)

A1.2.1.17. T Erisir, K Eren Spinor Representation of Directional q-Frame, SIGMA Journal

of Engineering and Science, (in press) 2023, (ESCI)

A1.2.1.18. K Eren, S. Şenyurt, H.K. Ayvacı, Characterizations of Tzitzeica Curves Using

Flc Frame, SIGMA Journal of Engineering and Science, (in press) 2023, (ESCI)

A1.4. Ulusal hakemli dergilerde yayımlanan

A1.4.1. Tam metin özgün makale

A1.4.1.1. Ersoy S., Eren K., “Sabit Olmayan Ortalama Eğrilikli Timelike Bonnet

Yüzeyler”, SAÜ. Fen Bilimleri Dergisi, 17. Cilt, 1. Sayı, 2013, 113-118, (TR-DİZİN).

A1.4.1.2. Eren K., “Lorentziyan Düzlem Hareketinde İkinci Eğrilik Merkezi”, BEÜ Fen

Bilimleri Dergisi, 8(4), 2019, 1154-1161, (TR-DİZİN).

A1.4.1.3. Şenyurt S., Eren K., “Spacelike Asli Normalli Spacelike Anti-Salkowski

Eğrisinin Frenet Çatısına Göre Smarandache Eğrileri”, Gümüşhane Fen Bilimleri Enstitüsü

Dergisi, 10(1), 2020,251-260, (TR-DİZİN).

A1.4.1.4. Şenyurt S., Eren K., “Smarandache Curves of Spacelike Salkowski Curve with

a Spacelike Principal Normal According to Frenet Frame”, Erzincan University Journal of

Science and Technology, 13(specıal ıssue -ı), 7-17, 2020, (TR- DİZİN).

A1.4.1.5. Şenyurt S., Eren K., Smarandache Curves of Spacelike Anti-Salkowski Curve

with a Timelike Principal Normal According to Frenet Frame. Erzincan Üniversitesi Fen

Bilimleri Enstitüsü Dergisi, 13(2), 404-416, 2020, (TR-DİZİN).

A1.4.1.6. Eren K., A. Kelleci, “On the Harmonic Evolute Surfaces of Hasimoto

Surfaces.” Adıyaman University Journal of Science, 11(1), 87-100, 2021, (TR-DİZİN).

A2. Bildiriler

Uluslararası

A2.1. Kongre, sempozyum, panel, çalıştay gibi bilimsel, sanatsal toplantılarda

sunulan ve tam metni yayımlanan

A2.1.2. Sözlü bildiri

A2.1.2.1. Eren K., Ersoy S., Circling-Point Curve in Minkowski Plane, 7th International

Eurasian Conference on Mathematical Sciences and Applications, Kyiv, Ukraine,

p. 179, 28-31 August 2018.

A2.1.2.2. Eren K., Ersoy S., Geometric Interpretation of Curvature Circles in Minkowski

Plane, 8th International Eurasian Conference on Mathematical Sciences and Applications,

Baku, Azerbaijan, p. 230, 27-30 August 2019.

A2.1.2.3. Şenyurt S., Eren K., Timelike Anti-Salkowski Eğrisinin Frenet Vektörlerinden

Eldeedilen Smarandache Eğrileri, Karadeniz 1.Uluslararası Multidisipliner Çalışmalar

Kongresi, p.667, 26.03.2019.

A2.1.2.4. Şenyurt S., Eren K., Timelike Salkowski Eğrisinin Frenet Vektörlerinden Elde

edilen Smarandache Eğrileri, Karadeniz 1.Uluslararası Multidisipliner Çalışmalar

Kongresi, p.680, 26.03.2019.

A2.2. Kongre, sempozyum, panel, çalıştay gibi bilimsel, sanatsal toplantılarda

sunulan ve özeti yayımlanan

A2.2.2. Sözlü bildiri

A2.2.2.1. Eren K., Ersoy S., “Applications of Complex Form of Instantaneous Invariants

to Planar Path-Curvature Theory”, 14th International Geometry Symposium, Pamukkale

University Denizli, Turkey, p. 123, May 25-28, 2016.

A2.2.2.2. Eren K., Ersoy S., “Burmester Theory in Affine Cayley-Klein Planes”, 15th

International Geometry Symposium, Amasya University, Amasya, Turkey, p.71, July 3-

6, 2017.

A2.2.2.3. Eren K., Ersoy S., Ergut, M., “On Cardan Position for the Lorentzian Plane

Motion of a Rigid Body”, 6th International Eurasian Conference on Mathematical

Sciences and Applications, Budapest, Hungary, p. 214, 15-18 August 2017.

A2.2.2.4. Eren K., Ersoy S., The Circling-Point Curve of Inverse Motion in Minkowski

Plane, 16th International Geometry Symposium, Manisa Celal Bayar University, Manisa-

TURKEY, p. 93. July 4-7, 2018.

A2.2.2.5. Eren K., Ersoy S., Instantaneous Kinematics of a Planar Two-Link Open Chain

in the Complex Plane 17th International Geometry Symposium Erzincan Binali Yildirim

University, Erzincan-TURKEY, p. 98., June 19-22, 2019.

A2.2.2.6. Şenyurt S., Eren K., Smarandache Curves of Spacelike Salkowski Curve with

a Spacelike Principal Normal According to Frenet Frame 17th International Geometry

Symposium Erzincan Binali Yildirim University, Erzincan-TURKEY, p. 97., June 19-22,

2019.

A2.2.2.7. Eren K., New Representation of Hasimoto Surfaces According to the Modified

Orthogonal Frame, 8th International Eurasian Conference on Mathematical Sciences and

Applications, Baku, Azerbaijan, p. 232, 27-30 August 2019.

A2.2.2.8. Eren K., Geometry of Complex Coupled Dispersionless and Complex Short

Pulse Equations by Using Bishop Frames, 8th International Eurasian Conference on

Mathematical Sciences and Applications, Baku, Azerbaijan, p. 234, 27-30 August 2019.

A2.2.2.9. Eren K., Ersoy S., On Curve Pairs of Tzitzeica Type., 9th International

Eurasian Conference on Mathematical Sciences and Applications, Skopje-North

Macedonıa, p. 136-137, 25-28 August 2020.

A2.2.2.10. K. Eren, M. Ö. Yıldız, M.Akyiğit,. Tubular Surfaces associated with Framed

Base Curves., 9th International Eurasian Conference on Mathematical Sciences and

Applications, Skopje-North Macedonıa, p. 134-135, 25-28 August 2020.

A2.2.2.11. K. Eren, S. Ersoy, “Moving Quaternionic Curves and Modified Korteweg-de

Vries Equation”, 18th International Geometry Symposium, İnönü University, Malatya-

TURKEY, p. 55., July 12-13, 2021.

A2.2.2.12. K. Eren, “Framed Developable Surfaces with Pointwise 1-Type Gauss Map”,

10th International Eurasian Conference on Mathematical Sciences and Applications,

Sakarya, Turkey, p. 147-148, 25-27 August 2021.

A2.2.2.13. K. Eren, S. Ersoy, “Hasimoto Surfaces with Pointwise 1- Type Gauss Map”,

10th International Eurasian Conference on Mathematical Sciences and Applications,

Sakarya, Turkey, p. 149-150, 25-27 August 2021.

A2.2.2.14. K. H. Ayvacı, K. Eren, S. Şenyurt, On ruled surfaces generated by dırectıon

curves wıth sannıa frame and theır characterızatıons, 6th International Conference on

Computational Mathematics and Engineering Sciences (CMES-2022), Ordu, Turkey, p.

314, 20-22.05.2022.

A2.2.2.15. K. H. Ayvacı, K. Eren, S. Şenyurt, A study on ınextensıble flows of

polynomıal curves wıth Flc frame, 6th International Conference on Computational

Mathematics and Engineering Sciences (CMES-2022), Ordu, Turkey, p. 315, 20-

22.05.2022.

A2.2.2.16. K. H. Ayvacı, K. Eren, S. Şenyurt, On Characterizations of Spherical Curves

Using Frenet Like Curve Frame, 19th International Geometry Symposium, Trakya

University, Edirne- TURKEY, p. 88., June 27-30, 2022.

A2.2.2.17. K. Eren, S. Ersoy, “Geometry of Coupled Dispersionless Equations with

Involute Evolute Curves”, 19th International Geometry Symposium, Trakya University,

Edirne- TURKEY, p. 89., June 27-30, 2022.

A2.2.2.18. H. H. Kösal, K. Eren, M. Akyiğit, “Euler and De Moivre´s Formulas for

Fundamental Matrices of Elliptic Quaternions”, 19th International Geometry Symposium,

Trakya University, Edirne- TURKEY, p. 82., June 27-30, 2022.

A2.2.2.19. H. H. Kosal, K. Eren, M. Akyigit, B. Celik, “Elliptic Quaternion Matrix Theory

and Its Applications”, 11th International Eurasian Conference on Mathematical Sciences

and Applications, Istanbul, Turkey, p. 165-166, 29 August—1 September, 2022.

A2.2.2.20. K. Eren, S. Ersoy, “Geometry of coupled dispersionless equations with

Mannheim curves”, 11th International Eurasian Conference on Mathematical Sciences

and Applications, Istanbul, Turkey, p. 170-171, 29 August—1 September, 2022.

A2.2.2.21. A. Çalışkan, K. Eren, S. Ersoy, “Dual magnetic curves and flux ruled

surfaces”, 2nd Internatıonal E-Conference On Mathematıcal And Statıstıcal Scıences: A

Selçuk Meetıng (ICOMSS´23), Selçuk University, Konya, Turkey, p. 64, June 5 – June 7,

2023.

Ulusal

A2.5. Kongre, sempozyum, panel, çalıştay gibi bilimsel, sanatsal toplantılarda

sunulan ve özeti yayımlanan

A2.5.2. Sözlü bildiri

A2.5.2.1. Ersoy S., Eren K., “Timelike tangent developable surfaces and Bonnet

surfaces” XI Geometri Sempozyumu, Ordu Üniversitesi, Ordu, 1-5 Temmuz 2013.

A2.5.2.2. Şenyurt S., Eren K., “Timelike Normalli Spacelike Salkowski Eğrilerinden Elde

Edilen Smarandache Eğrileri" 14. Ankara Matematik Günleri (AMG 2019) Gazi

Universitesi, Ankara, p. 68, 28-29 Haziran 2019.

A2.5.2.3. Şenyurt S., Eren K., “Frenet Çatısına Göre Timelike Normalli Spacelike Anti-

Salkowski Eğrisinden Elde Edilen Smarandache Eğrileri”, 32.Ulusal Matematik

Sempozyumu Ondokuz Mayıs Üniversitesi, Samsun, p.101, 31 Ağustos-3 Eylül 2019.

A2.5.2.4. Şenyurt S., Eren K., “Frenet Çatısına Göre Spacelike Normalli Spacelike Anti-

Salkowski Eğrisinden Elde Edilen Smarandache Eğrileri”, 32.Ulusal Matematik

Sempozyumu Ondokuz Mayıs Üniversitesi, Samsun, p.102, 31 Ağustos-3 Eylül 2019.

A3. Kitaplar

A3.1. Uluslararası yayınevleri ya da kuruluşlarca basılmış

A3.1.2. Kitapta bölüm yazarlığı

A3.1.2.1. Kemal Eren, "Geometry of coupled dispersionless equations by using bishop

frames". TBILISI- MATHEMATICS, Sciendo, 2020, pp. 38-47.

https://doi.org/10.2478/9788395793882-004.

A4. Çevirmenlik

A4.2. Yabancı dilden

A4.2.2.Kitapta bölüm

Atıflar

A5.1. Uluslararası

A5.1.1. Bilimsel kitapta yapılan atıf

• K. Eren, S. Ersoy, Revisiting Burmester theory with complex forms of

Bottema’s instantaneous invariants, Complex Var. Elliptic Equ., 62(4)

(2017), 431-437.

1. Cera, M., Cirelli, M., Pennestrì, E., Valentini, P. P., & Shanmukhasundaram, V. R.

(2021). Recent developments in higher path curvature analysis. In Advances in

Industrial Machines and Mechanisms (pp. 27-37). Springer (Uluslararası tanınmış

kitap)

2. Ersoy S., Tosun M., " Rolling Circles of Motions: Yesterday and Today." In book:

Models and Theories in Social Systems, 2019, DOI:10.1007/978-3-030-00084-

4_11. (Uluslararası tanınmış kitap)

• Eren K., Kosal, H.H., “Evolution of Space Curves and the Special Ruled

Surfaces with Modified Orthogonal Frame”, AIMS Mathematics, 5(3),

2027– 2039, (2020). (SCI-Exp)

3. Tuğba DEMĠRKIRAN, Torsiyon ile Modifiye Edilmiş Ortogonal Çatıda Eğriler Ve

Regle Yüzeyler, Erciyes Üniversitesi, Doktora Tezi, Kayseri, 2022.(Ulusal Tez)

• Ersoy, S., Eren K., “Timelike Tangent Developable Surfaces and Bonnet

Surface”, Abstract and Applied Analysis, Volume 2016, Article ID

6837543, 7 pages.

4. Yüksekdağ, Burcu. Lorentz uzayında bonnet yüzeyleri, Tez (Doktora)- Yıldız Teknik

Üniversitesi, Fen Bilimleri Enstitüsü, 2022

• K. Eren. ve S. Ersoy, "Timelike Bonnet surfaces with non-constant

curvature,"Sakarya University Journal of Science, vol. 17, no. 1, pp. 113-

118, 2013.

5. Yüksekdağ, Burcu. Lorentz uzayında bonnet yüzeyleri, Tez (Doktora)- Yıldız Teknik

Üniversitesi, Fen Bilimleri Enstitüsü, 2022

A5.1.2. SCI (Science Citation Index) Expanded kapsamındaki dergilerde yapılan

atıf

• K. Eren, S. Ersoy, Revisiting Burmester theory with complex forms of

Bottema’s instantaneous invariants, Complex Var. Elliptic Equ., 62(4)

(2017), 431-437.

1. Cera, M., and E. Pennestrì. (2019): "The mechanical generation of planar curves

by means of point trajectories, line and circle envelopes: a unified treatment of the

classic and generalized Burmester problem." Mechanism and Machine Theory, 142,

103580. (SCI-EXP)

2. Cera, M., and E. Pennestrì. (2019): "Higher-order curvature analysis of planar

curves enveloped by straight lines." Mechanism and Machine Theory, 134, 213-

223. (SCI-EXP)

3. Cera, M., and E. Pennestrì. (2018):” Generalized Burmester points computation by

means of Bottema’s instantaneous invariants and intrinsic geometry”, Mechanism

and Machine Theory, 129, 316-335, (SCI-EXP).

4. M. Cera, M. Cirelli, E. Pennestrì, R. Salerno, P.P. Valentini (2022):” Path-

Constrained Points synthesis of symmetric mechanisms for prescribed higher-order

curvature features”, Mechanism and Machine Theory, Volume 167, 104562, (SCI-

EXP).

• Eren K., Kosal, H.H., “Evolution of Space Curves and the Special Ruled

Surfaces with Modified Orthogonal Frame”, AIMS Mathematics, 5(3),

2027– 2039, (2020). (SCI-Exp)

5. H. K. Elsayied, A. A. Altaha, Ayman Elsharkawy (2021):” On Some Special Curves

According to the Modified Orthogonal Frame in Minkowski 3-space E 3 1, Revista

Kasmera 49(1):2-15.

6. Ayman Elsharkawy, Hoda El-Sayied, Abdallah altaha (2021): Bertrand Curves with

the Modified Orthogonal Frame in Minkowski 3-space E31, Revista de Educación

(Madrid),392(6):43: 55 (SSCI).

7. Kiziltug S., Cakmak A., Erisir T., Mumcu G., On tubular surfaces with modified

orthogonal frame in Galilean space G3, Thermal Science, 2022, 26(Spec. issue 2),

571-581.

8. N. Yüksel, B. Saltık. On inextensible ruled surfaces generated via a curve derived

from a curve with constant torsion. AIMS Mathematics, 2023, 8(5): 11312-11324.

doi: 10.3934/math.2023573

• Akyiğit M., Eren K., Kösal H.H, “Tubular Surfaces with Modified Orthogonal

Frame”, Honam Mathematical Journal, 43(3), 453-463, 2021.

9. Kiziltug S., Cakmak A., Erisir T., Mumcu G., On tubular surfaces with modified

orthogonal frame in Galilean space G3, Thermal Science, 2022, 26(Spec. issue 2),

571-581.

10. Mustafa Bilici and Gokhan Koseoglu, Tubular involutive surfaces with Frenet frame

in Euclidean 3- space, Maejo Int. J. Sci. Technol. 2023, 17(02), 96-106

• K. Eren, On The Harmonıc Evolute Surfaces Of Tubular Surfaces In

Euclıdean 3-Space, Journal of Science and Arts, 2(55), 449-460, 2021.

11. E. M. Solouma, I. Al-Dayel, Harmonic evolute surface of tubular surfaces via B-

Darboux frame in Euclidean 3-space, Adv. Math. Phys., 2021 (2021), 5269655.

https://doi.org/10.1155/2021/5269655.

• Eren K., Kelleci Akbay A. On the Harmonic Evolute Surfaces of Hasimoto

Surfaces. Adıyaman University Journal of Science. 2021; 11(1): 87-100.

12. E. M. Solouma, I. Al-Dayel, Harmonic evolute surface of tubular surfaces via B-

Darboux frame in Euclidean 3-space, Adv. Math. Phys., 2021 (2021), 5269655.

https://doi.org/10.1155/2021/5269655.

13. Bendehiba Senoussi and Alev Kelleci Akbay, “Characterizations of Hasimoto

Surfaces in Euclidean 3-spaces 3

E ” Appl. Math. Inf. Sci. 16, No. 5, 689-694

(2022).

14. Ayman Elsharkawy, Clemente Cesarano, Abdelrhman Tawfiq, Abdul Aziz Ismail.

The non-linear Schrödinger equation associated with the soliton surfaces in

Minkowski 3-space. AIMS Mathematics, 2022, 7(10): 17879-17893. doi:

10.3934/math.2022985

• Yanlin Li, Kemal Eren, Kebire Hilal Ayvacı, Soley Ersoy. Simultaneous

characterizations of partner ruled surfaces using Flc frame. AIMS

Mathematics, 2022, 7(11): 20213-20229. doi: 10.3934/math.20221106

15. Saha A, Azami S, Breaz D, Rapeanu E, Hui SK. Evolution for First Eigenvalue of

LT,f on an Evolving Riemannian Manifold. Mathematics. 2022; 10(23):4614.

https://doi.org/10.3390/math10234614

16. Santu Dey, Certain results of κ-almost gradient Ricci-Bourguignon soliton on

pseudo-Riemannian manifolds, Journal of Geometry and Physics, Volume 184,

2023, 104725, https://doi.org/10.1016/j.geomphys.2022.104725.

17. Wang Y, Yang L, Liu Y, Chang Y. Singularities for Focal Sets of Timelike Sabban

Curves in de Sitter 3-Space. Symmetry. 2022; 14(12):2471.

https://doi.org/10.3390/sym14122471

18. Chen Z, Li Y, Sarkar S, Dey S, Bhattacharyya A. Ricci Soliton and Certain Related

Metrics on a Three-Dimensional Trans-Sasakian Manifold. Universe. 2022;

8(11):595. https://doi.org/10.3390/universe8110595

19. Li, Y., Mondal, S., Dey, S. et al. A Study of Conformal η-Einstein Solitons on Trans-

Sasakian 3-Manifold. J Nonlinear Math Phys (2022).

https://doi.org/10.1007/s44198-022-00088-z

20. Wang Y, Yang L, Li P, Chang Y. Singularities of Osculating Developable Surfaces of

Timelike Surfaces along Curves. Symmetry. 2022; 14(11):2251.

https://doi.org/10.3390/sym14112251

21. Siddiqi MD, Alkhaldi AH, Khan MA, Siddiqui AN. Conformal η-Ricci Solitons on

Riemannian Submersions under Canonical Variation. Axioms. 2022; 11(11):594.

https://doi.org/10.3390/axioms11110594

22. Li Y, Nazra SH, Abdel -Baky RA. Singularity Properties of Timelike Sweeping

Surface in Minkowski 3-Space. Symmetry. 2022; 14(10):1996.

https://doi.org/10.3390/sym14101996

23. Yanlin Li, A. A. Abdel-Salam, M. Khalifa Saad. Primitivoids of curves in Minkowski

plane[J]. AIMS Mathematics, 2023, 8(1): 2386-2406. doi: 10.3934/math.2023123

24. Ma R, Pei D. The ∗-Ricci Operator on Hopf Real Hypersurfaces in the Complex

Quadric. Mathematics. 2023; 11(1):90. https://doi.org/10.3390/math11010090

25. Li Y, Chen Z, Nazra SH, Abdel -Baky RA. Singularities for Timelike Developable

Surfaces in Minkowski 3-Space. Symmetry. 2023; 15(2):277.

https://doi.org/10.3390/sym15020277

26. Li Y, Aldossary MT, Abdel-Baky RA. Spacelike Circular Surfaces in Minkowski 3-

Space. Symmetry. 2023; 15(1):173. https://doi.org/10.3390/sym15010173

27. Li, Y., Gür Mazlum, S., Senyurt, S. The Darboux Trihedrons of Timelike Surfaces in

the Lorentzian 3-Space. Int. J. Geom. Methods Mod. Phys., 20(02), 2350030, 1–

35, 2023. https://doi.org/10.1142/S0219887823500305

28. Santu Dey, Conformal Ricci soliton and almost conformal Ricci soliton in

paracontact geometry, Int. J. Geom. Methods Mod. Phys., 20(03), 2350041, 2023.

29. Li Y, Çalışkan A. Quaternionic Shape Operator and Rotation Matrix on Ruled

Surfaces. Axioms. 2023; 12(5):486. https://doi.org/10.3390/axioms12050486

30. Gökhan Köseoğlu, Mustafa Bilici, Involutive sweeping surfaces with Frenet frame in

Euclidean3-space, Heliyon, 9(8), E18822, 2023,

https://doi.org/10.1016/j.heliyon.2023.e18822

• Yanlin Li, Kemal Eren, Kebire Hilal Ayvacı, Soley Ersoy. The developable

surfaces with pointwise 1-type Gauss map of Frenet type framed base

curves in Euclidean 3-space[J]. AIMS Mathematics, 2023, 8(1): 2226-

2239. doi: 10.3934/math.2023115

31. Saha A, Azami S, Breaz D, Rapeanu E, Hui SK. Evolution for First Eigenvalue of

LT,f on an Evolving Riemannian Manifold. Mathematics. 2022; 10(23):4614.

https://doi.org/10.3390/math10234614

32. Santu Dey, Certain results of κ-almost gradient Ricci-Bourguignon soliton on

pseudo-Riemannian manifolds, Journal of Geometry and Physics,Volume

184,2023,104725, https://doi.org/10.1016/j.geomphys.2022.104725.

33. Wang Y, Yang L, Liu Y, Chang Y. Singularities for Focal Sets of Timelike Sabban

Curves in de Sitter 3-Space. Symmetry. 2022; 14(12):2471.

https://doi.org/10.3390/sym14122471

34. Chen Z, Li Y, Sarkar S, Dey S, Bhattacharyya A. Ricci Soliton and Certain Related

Metrics on a Three-Dimensional Trans-Sasakian Manifold. Universe. 2022;

8(11):595. https://doi.org/10.3390/universe8110595

35. Yanlin Li, A. A. Abdel-Salam, M. Khalifa Saad. Primitivoids of curves in Minkowski

plane[J]. AIMS Mathematics, 2023, 8(1): 2386-2406. doi: 10.3934/math.2023123

36. Li Y, Chen Z, Nazra SH, Abdel -Baky RA. Singularities for Timelike Developable

Surfaces in Minkowski 3-Space. Symmetry. 2023; 15(2):277.

https://doi.org/10.3390/sym15020277

37. Li Y, Aldossary MT, Abdel-Baky RA. Spacelike Circular Surfaces in Minkowski 3-

Space. Symmetry. 2023; 15(1):173. https://doi.org/10.3390/sym15010173

38. Ma R, Pei D. The ∗-Ricci Operator on Hopf Real Hypersurfaces in the Complex

Quadric. Mathematics. 2023; 11(1):90. https://doi.org/10.3390/math11010090

39. Li, Y. and Tuncer, O. O.. On (contra)pedals and (anti)orthotomics of frontals in de

Sitter 2-space, Math. Meth. Appl. Sci. (2023), 1– 15.

https://doi:10.1002/mma.9173

40. Li Y, Srivastava SK, Mofarreh F, Kumar A, Ali A. Ricci Soliton of CRCR-Warped

Product Manifolds and Their Classifications. Symmetry. 2023; 15(5):976.

https://doi.org/10.3390/sym15050976

41. N. Yüksel, B. Saltık. On inextensible ruled surfaces generated via a curve derived

from a curve with constant torsion. AIMS Mathematics, 2023, 8(5): 11312-11324.

doi: 10.3934/math.2023573

42. Li, Y., Ganguly, D. Kenmotsu Metric as Conformal η-Ricci Soliton. Mediterr. J.

Math. 20, 193 (2023). https://doi.org/10.1007/s00009-023-02396-0

43. Al-Jedani A, Abdel-Baky R. Sweeping Surfaces Due to Conjugate Bishop Frame in

3-Dimensional Lie Group. Symmetry. 2023; 15(4):910.

https://doi.org/10.3390/sym15040910

44. Mihai I, Mohammed M. Optimal Inequalities for Submanifolds in Trans-Sasakian

Manifolds Endowed with a Semi-Symmetric Metric Connection. Symmetry. 2023;

15(4):877. https://doi.org/10.3390/sym15040877

45. Yanlin Li, Ali. H. Alkhaldi, Akram Ali, R. A. Abdel-Baky, M. Khalifa Saad.

Investigation of ruled surfaces and their singularities according to Blaschke frame

in Euclidean 3-space. AIMS Mathematics, 2023, 8(6): 13875-13888. doi:

10.3934/math.2023709

46. Bin Turki N. A Note on Incompressible Vector Fields. Symmetry. 2023;

15(8):1479. https://doi.org/10.3390/sym15081479

47. Al-Dayel I. Estimation of Ricci Curvature for Hemi-Slant Warped Product

Submanifolds of Generalized Complex Space Forms and Their

Applications. Symmetry. 2023; 15(6):1156.

https://doi.org/10.3390/sym15061156

48. Li Y, Çalışkan A. Quaternionic Shape Operator and Rotation Matrix on Ruled

Surfaces. Axioms. 2023; 12(5):486. https://doi.org/10.3390/axioms12050486

49. Almoneef AA, Abdel-Baky RA. Spacelike Lines with Special Trajectories and

Invariant Axodes. Symmetry. 2023; 15(5):1087.

https://doi.org/10.3390/sym15051087

50. Chen X, Liu H. Two Special Types of Curves in Lorentzian α-Sasakian 3-

Manifolds. Symmetry. 2023; 15(5):1077. https://doi.org/10.3390/sym15051077

51. Yanlin Li, Piscoran Laurian-Ioan, Lamia Saeed Alqahtani, Ali H. Alkhaldi, Akram Ali.

Zermelo´s navigation problem for some special surfaces of rotation[J]. AIMS

Mathematics, 2023, 8(7): 16278-16290. doi: 10.3934/math.2023833

52. A. A. Abdel-Salam, M. I. Elashiry, M. Khalifa Saad. On the equiform geometry of

special curves in hyperbolic and de Sitter planes[J]. AIMS Mathematics, 2023,

8(8): 18435-18454. doi: 10.3934/math.2023937

53. Li Y, Srivastava SK, Mofarreh F, Kumar A, Ali A. Ricci Soliton of CR-Warped

Product Manifolds and Their Classifications. Symmetry. 2023; 15(5):976.

https://doi.org/10.3390/sym15050976

54. Li, Y., Ganguly, D. Kenmotsu Metric as Conformal η�-Ricci Soliton. Mediterr. J.

Math. 20, 193 (2023). https://doi.org/10.1007/s00009-023-02396-0

55. Al-Jedani A, Abdel-Baky R. Sweeping Surfaces Due to Conjugate Bishop Frame in

3-Dimensional Lie Group. Symmetry. 2023; 15(4):910.

https://doi.org/10.3390/sym15040910

56. Mihai I, Mohammed M. Optimal Inequalities for Submanifolds in Trans-Sasakian

Manifolds Endowed with a Semi-Symmetric Metric Connection. Symmetry. 2023;

15(4):877. https://doi.org/10.3390/sym15040877

57. Yanlin Li, Ali. H. Alkhaldi, Akram Ali, R. A. Abdel-Baky, M. Khalifa Saad.

Investigation of ruled surfaces and their singularities according to Blaschke frame

in Euclidean 3-space. AIMS Mathematics, 2023, 8(6): 13875-13888. doi:

10.3934/math.2023709

58. Mustafa Bilici and Gokhan Koseoglu, Tubular involutive surfaces with Frenet frame

in Euclidean 3- space, Maejo Int. J. Sci. Technol. 2023, 17(02), 96-1060

59. Li Y, Kumara HA, Siddesha MS, Naik DM. Characterization of Ricci Almost Soliton

on Lorentzian Manifolds. Symmetry. 2023; 15(6):1175.

https://doi.org/10.3390/sym15061175

• Yanlin Li, Kemal Eren, Soley Ersoy. On simultaneous characterizations of

partner-ruled surfaces in Minkowski 3-space. AIMS Mathematics, 2023,

8(9): 22256-22273. doi: 10.3934/math.20231135

60. Bin Turki N. A Note on Incompressible Vector Fields. Symmetry. 2023;

15(8):1479. https://doi.org/10.3390/sym15081479

61. Erkan E. Concircular Vector Fields on Radical Anti-Invariant Lightlike Hypersurfaces

of Almost Product-like Statistical Manifolds. Symmetry. 2023; 15(8):1531.

https://doi.org/10.3390/sym15081531

62. Li Y, Gupta MK, Sharma S, Chaubey SK. On Ricci Curvature of a Homogeneous

Generalized Matsumoto Finsler Space. Mathematics. 2023; 11(15):3365.

https://doi.org/10.3390/math11153365

63. Khan MNI, Mofarreh F, Haseeb A, Saxena M. Certain Results on the Lifts from an

LP-Sasakian Manifold to Its Tangent Bundle Associated with a Quarter-Symmetric

Metric Connection. Symmetry. 2023; 15(8):1553.

https://doi.org/10.3390/sym15081553

64. Li Y, Güler E. A Hypersurfaces of Revolution Family in the Five-Dimensional

Pseudo-Euclidean Space 5

2E , Mathematics. 2023; 11(15):3427.

https://doi.org/10.3390/math11153427

• Kemal Eren, "Geometry of coupled dispersionless equations by using

bishop frames". TBILISI- MATHEMATICS, Sciendo, 2020, pp. 39-48.

https://doi.org/10.2478/9788395793882-004.

65. Jun Yu, Bo Ren, Ping Liu, Jia-Li Zhou, "CTE Solvability, Nonlocal Symmetry, and

Interaction Solutions of Coupled Integrable Dispersionless System", Complexity,

vol. 2022, Article ID 3221447, 7 pages, 2022.

https://doi.org/10.1155/2022/3221447

66. Kebire Hilal Ayvaci and Gulnur Saffak Atalay, Surface Family with a Common

Mannheim B-Pair Asymptotic Curve, International Journal of Geometric Methods in

Modern Physics, https://doi.org/10.1142/S0219887823502298

• Kemal Eren & Soley Ersoy (2022) Complex coupled dispersionless

equations in Minkowski 3-space, Complex Variables and Elliptic Equations,

DOI: 10.1080/17476933.2022.2097665

67. Jun Yu, Bo Ren, Ping Liu, Jia-Li Zhou, "CTE Solvability, Nonlocal Symmetry, and

Interaction Solutions of Coupled Integrable Dispersionless System", Complexity,

vol. 2022, Article ID 3221447, 7 pages, 2022.

https://doi.org/10.1155/2022/3221447

• S. Şenyurt and E. Kemal, Smarandache curves of spacelike anti-Salkowski

curve with a spacelike principal normal according to Frenet

frame, Gümüşhane Univ., J. Sci. Technol. 10 (2020) 251–260.

68. Li, Y., Gür Mazlum, S., Senyurt, S. The Darboux Trihedrons of Timelike Surfaces in

the Lorentzian 3-Space. Int. J. Geom. Methods Mod. Phys., 20(02), 2350030, 1–

35,2023. https://doi.org/10.1142/S0219887823500305

• Kelleci, Eren K. “On Evolution of Some Associated Type Ruled Surfaces.”

Math. Sci. Appl. E-Notes, 8(2), 178-186, (2020).

69. N. Yüksel, B. Saltık. On inextensible ruled surfaces generated via a curve derived

from a curve with constant torsion. AIMS Mathematics, 2023, 8(5): 11312-11324.

doi: 10.3934/math.2023573

• Eren K., Ersoy, S., “Characterizations of Tzitzeica Curves Using Bishop

Frames.” Math Meth Appl Sci. 2021; 1- 14.

https://doi.org/10.1002/mma.7483 (SCI- Exp)

70. Kebire Hilal Ayvaci and Gulnur Saffak Atalay, Surface Family with a Common

Mannheim B-Pair Asymptotic Curve, International Journal of Geometric Methods in

Modern Physics, https://doi.org/10.1142/S0219887823502298

• K. Eren, K. Yesmakhanova, S. Ersoy, R. Myrzakulov, “Involute evolute

curve family induced by the coupled dispersionless equations”, Optik,

Volume 270, 2022, 169915, https://doi.org/10.1016/j.ijleo.2022.169915

71. G. Köseoğlu, M. Bilici, Involutive sweeping surfaces with Frenet frame in

Euclidean3-space, Heliyon, 9(8), E18822, 2023,

https://doi.org/10.1016/j.heliyon.2023.e18822

72. Qian, J., Sun, M. & Zhang, B. Involutes of null Cartan curves and their

representations in Minkowski 3-space. Soft Comput (2023).

https://doi.org/10.1007/s00500-023-08848-9

• Akyiğit M., Eren K., Kösal H.H, “Tubular Surfaces with Modified Orthogonal

Frame”, Honam Mathematical Journal, 43(3), 453-463, 2021.

73. M. Bilici and G. Koseoglu, Tubular involutive surfaces with Frenet frame in

Euclidean 3- space, Maejo Int. J. Sci. Technol. 2023, 17(02), 96-1060

A5.1.3.Yukarıdaki indekslere girmeyen diğer uluslararası dergilerde yapılan atıf

• Ersoy, S., Eren K., “Timelike Tangent Developable Surfaces and Bonnet

Surface”, Abstract and Applied Analysis, Volume 2016, Article ID

6837543, 7 pages.

1. Özen, Kahraman Esen. (2020): "Siacci´s theorem for Frenet curves in Minkowski 3-

space." Mathematical Sciences and Applications E-Notes 8(1), 159-167.

2. Aslan, Muradiye Çimdiker, and Gülşah Aydın Şekerci. (2021): "An Examination of

The Condition under which a Conchoidal Surface is a Bonnet Surface in the

Euclidean 3-Space." Facta Universitatis-Series Mathematics and Informatics 36(3),

627-641.

3. Özen K. E. On the Trigonometric and p -Trigonometric Functions of Elliptical

Complex Variables. Communications in Advanced Mathematical Sciences. 2020;

3(3): 143-154.

• Yanlin Li, Kemal Eren, Kebire Hilal Ayvacı, Soley Ersoy. The developable

surfaces with pointwise 1-type Gauss map of Frenet type framed base

curves in Euclidean 3-space[J]. AIMS Mathematics, 2023, 8(1): 2226-

2239. doi: 10.3934/math.2023115

4. B.-Y. Chen, E. Güler, Y. Yaylı and H. H. Hacısalihoğlu, Differential geometry of 1-

type submanifolds and submanifolds with 1-type Gauss map. Int. Electron. J.

Geom. 16(1), 1-43, (2023).

5. Bahar Dogan Yazıcı, Sıddıka Ozkaldı Karakus, and Murat Tosun. On adjoınt curves

of framed curves and some ruled surfaces, Honam Mathematical J. 45 (2023), No.

3, pp. 380–396. https://doi.org/10.5831/HMJ.2023.45.3.380.

• K. Eren, On The Harmonıc Evolute Surfaces Of Tubular Surfaces In

Euclıdean 3-Space, Journal of Science and Arts, 2(55), 449-460, 2021.

6. Yavuz, Ayşe, Constructıon Of Bınormal Motıon And Characterızatıon Of Curves On

Surface By System Of Dıfferentıal Equatıons For Posıtıon Vector, Journal of Science

and Arts, 21(4), (2021): 1043-1056. DOI: 10.46939/J.Sci.Arts-21.4-a16.

• Kemal Eren. "Geometry of coupled dispersionless equations by using

bishop frames". TBILISI- MATHEMATICS, Sciendo, 2020, pp. 39-48.

https://doi.org/10.2478/9788395793882-004.

7. Özen K. E., Tosun M. On the Resolution of the Acceleration Vector According to

Bishop Frame. Universal Journal of Mathematics and Applications. 2021; 4(1): 26-

32.

• K. Eren, Ö. G. Yıldız, M. Akyiğit, Tubular surfaces associated with framed

base curves in Euclidean 3-space, Math. Meth. Appl. Sci., (2021), 1- 9,

https://doi.org/10.1002/mma.7590.

8. Akyiğit M., Yıldız Ö. G. On the Framed Normal Curves in Euclidean 4-space.

Fundamental Journal of Mathematics and Applications. 2021; 4(4): 258-263.

• K. Eren, S. Ersoy, Revisiting Burmester theory with complex forms of

Bottema’s instantaneous invariants, Complex Var. Elliptic Equ., 62(4)

(2017), 431-437.

9. Özen, Kahraman Esen. (2020): "On the trigonometric and p-trigonometric

functions of elliptical complex variables." Communications in Advanced

Mathematical Sciences 3(3), 143-154.

10. Özen, Kahraman Esen, and Murat Tosun. (2021): "Fibonacci Elliptic

Biquaternions." Fundamental Journal of Mathematics and Applications 4(1), 10-16.

11. V. Galabov , R. Roussev and B. Paleva-kadiyska , "Synthesis of Four-Bar Linkages

by Four Infinitely Close Relative Positions and Pressure Angle", El-Cezeri, vol. 10,

no. 2, pp. 401-408, May. 2023, doi:10.31202/ecjse.1239481

• Eren K., Ersoy, S., “Burmester theory in Cayley–Klein planes with affine

base”, J. Geom. 109 (2018), no. 3, Art. 45, 12 pp.

12. Özen K. On the Trigonometric and p-Trigonometric Functions of Elliptical Complex

Variables. Communications in Advanced Mathematical Sciences. 2020; 3(3): 143-

154.

13. Özen K. E., Tosun M. Fibonacci Elliptic Biquaternions. Fundamental Journal of

Mathematics and Applications. 2021; 4(1): 10-16.

14. V. Galabov , R. Roussev and B. Paleva-kadiyska , "Synthesis of Four-Bar Linkages

by Four Infinitely Close Relative Positions and Pressure Angle", El-Cezeri, vol. 10,

no. 2, pp. 401-408, May. 2023, doi:10.31202/ecjse.1239481

• Eren K., Kosal, H.H., “Evolution of Space Curves and the Special Ruled

Surfaces with Modified Orthogonal Frame”, AIMS Mathematics, 5(3),

2027– 2039, (2020). (SCI-Exp)

15. Özen K. E., Tosun M. A New Moving Frame for Trajectories with Non-Vanishing

Angular Momentum. Journal of Mathematical Sciences and Modelling. 2021; 4(1):

7-18.

16. Gür Mazlum S., Şenyurt S., Bektaş M. Salkowski Curves and Their Modified

Orthogonal Frames in E3, Journal of New Theory. 2022; (40): 12-26.

17. Özel Ş., Bektaş M. On the Characterisations of Curves with Modified Orthogonal

Frame in E3, Journal of New Theory. 2022; (40): 54-59.

18. Gur Mazlum S. and Bektas¸ M. On the modified orthogonal frames of the non-unit

speed curves in Euclidean 3-Space E3, Turkish Journal of Science.2022, 7(2), 58-

74.

19. G. U. Kaymanlı, C. Ekici, Evolutions of the Ruled Surfaces along a Spacelike Space

Curve, Punjab University Journal of Mathematics (2022), 54(4), 221-232,

https://doi.org/10.52280/pujm.2022.540401

20. E. Karaca, "An Examination for the Intersection of Two Ruled Surfaces",

Fundamental Journal of Mathematics and Applications, vol. 6, no. 1, pp. 70-77,

Mar. 2023, doi:10.33401/fujma.1235668

21. Çalışkan A. Characterizations of Unit Darboux Ruled Surface with Quaternions.

Journal of New Theory. 2023; (42): 43-54.

• Şenyurt S., Eren K., “Spacelike Asli Normalli Spacelike Anti-Salkowski

Eğrisinin Frenet Çatısına Göre Smarandache Eğrileri”, Gümüşhane Fen

Bilimleri Enstitüsü Dergisi, 10(1), 2020,251-260.

22. ÖZEN K. Siacci´s Theorem for Frenet Curves in Minkowski 3-Space. Math. Sci.

Appl. E-Notes. 2020; 8(1): 159-167.

23. Özen K. E., Tosun M. A New Moving Frame for Trajectories on Regular Surfaces.

Ikonion Journal of Mathematics. 2021; 3(1): 20-34.

24. Emad Solouma, Equiform spacelike Smarandache curves of anti-eqiform Salkowski

curve according to equiform frame, International Journal of Mathematical Analysis,

Vol. 15, 2021, no. 1, 43-59, doi: 10.12988/ijma.2021.912141

25. S. Şenyurt, D. Canli, E. Çan, S. G. Mazlum, Some special Smarandache ruled

surfaces by Frenet frame in E3-II Honam Mathematical Journal, Vol.44, No.4,

pp.594-617, December, 2022

26. Kılıçoglu, Ş., Şenyurt, S. & Gür Mazlum, S. (2022). The Frenet Vectors and the

Curvatures of Curves N−T∗B∗ in E3 . Hagia Sophia Journal of Geometry, 4 (2), 11-

18. Retrieved from https://dergipark.org.tr/en/pub/hsjg/issue/74307/1214403

27. Şenyurt, Süleyman and Ayvacı, Kebire Hilal and Canlı, Davut, Smarandache

Curves According to Flc-frame in Euclidean 3-space, Fundamentals of

Contemporary Mathematical Sciences, Volume 4, Issue 1, 16- 30,2023.

28. Yüksel N., Saltık B., Karacan M. K. The Characterizations of The Curve Generated

by a Curve with Constant Torsion. Konuralp J. Math., 2023; 11(1): 1-7.

29. Şenyurt, Süleyman; Ayvacı, Kebire Hilal; and Canlı, Davut (2023). (R2026) Special

Smarandache Ruled Surfaces According to Flc Frame in E^3, Applications and

Applied Mathematics: An International Journal (AAM), Vol. 18, Iss. 1, Article 16.

18 pages. https://digitalcommons.pvamu.edu/aam/vol18/iss1/16

30. B. Aksan and S. G. Mazlum, On the spherıcal ındıcatrıx curves of the spacelıke

salkowskı curve wıth tımelıke prıncıpal normal ın Lorentzıan 3-space, Honam

Mathematical J. 45 (2023), No. 3, pp. 513–541.

https://doi.org/10.5831/HMJ.2023.45.3.513

• Şenyurt S., Eren K., “Smarandache Curves of Spacelike Salkowski Curve

with a Spacelike Principal Normal According to Frenet Frame”, Erzincan

University Journal of Science and Technology, 13(specıal ıssue -ı), 7- 17,

2020.

31. ÖZEN K. Siacci´s Theorem for Frenet Curves in Minkowski 3-Space. Math. Sci.

Appl. E-Notes. 2020; 8(1): 159-167.

32. S. Şenyurt, D. Canlı, E. Çan, S. G. Mazlum, Some special Smarandache ruled

surfaces by Frenet frame in E3-II Honam Mathematical Journal, Vol.44, No.4,

pp.594-617, December, 2022

33. Solouma, E. “Equiform spacelike Smarandache curves of anti-eqiform Salkowski

curve according to equiform frame.” International Journal of Mathematical Analysis

15.1 (2021): 43-59.

34. Şenyurt, S., et al. “Smarandache curves according to Flc-frame in Euclidean 3-

space.” Fundamentals of Contemporary Mathematical Sciences 4.1 (2023): 16- 30.

• Eren K., Ersoy, S., “Characterizations of Tzitzeica Curves Using Bishop

Frames.” Math Meth Appl Sci. 2021; 1 - 14.

https://doi.org/10.1002/mma.7483 (SCI- Exp)

35. Bahar Doğan Yazıcı, Sıddıka Özkaldı Karakuş, Murat Tosun, On Framed Tzıtzeıca

Curves In Euclıdean Space, FACTA UNIVERSITATIS (NIS) Ser. Math. Inform.,

2022, 37(2), 307-319. https://doi.org/10.22190/FUMI211025021D.

36. Özen KE, İşbilir Z, Tosun M (2022) Characterization of Tzitzeica curves using

positional adapted frame. Konuralp Journal of Mathematics 10:260-268

• Şenyurt S., Eren K., “Smarandache Curves of Spacelike Anti-Salkowski

Curve with a Timelike Principal Normal According to Frenet Frame”,

Erzincan University Journal of Science and Technology, 13(2), 404- 416,

2020.

37. S. Şenyurt, D. Canlı, E. Çan, S. G. Mazlum, Some special Smarandache ruled

surfaces by Frenet frame in E3-II Honam Mathematical Journal, Vol.44, No.4,

pp.594-617, December, 2022

38. Şenyurt, S., et al. “Smarandache curves according to Flc-frame in Euclidean 3-

space.” Fundamentals of Contemporary Mathematical Sciences 4.1 (2023): 16- 30.

39. Özen, K. “Siacci´s theorem for Frenet curves in Minkowski 3-space.” Mathematical

Sciences and Applications E-Notes 8.1 (2020): 159-167.

• Şenyurt S., Eren K., “Some Smarandache Curves Constructed From A

Spacelıke Salkowskı Curve Wıth Tımelıke Prıncıpal Normal”, Punjab

Unıversıty Journal Of Mathematıcs, Vol 53, No 9, 679-690,2021.

40. S. Şenyurt, D. Canlı, E. Çan, S. G. Mazlum, Some special Smarandache ruled

surfaces by Frenet frame in E3-II Honam Mathematical Journal, Vol.44, No.4,

pp.594-617, December, 2022

41. Şenyurt, Süleyman and Ayvacı, Kebire Hilal and Canlı, Davut, Smarandache

Curves According to Flc-frame in Euclidean 3-space, Fundamentals of

Contemporary Mathematical Sciences, Volume 4, Issue 1, 16- 30,2023.

• Eren K., Ersoy, S., “Cardan posıtıons in the Lorentzıan plane.” Honam

Mathematical Journal, 40(1), 2018,187-198.

DOI10.5831/HMJ.2018.40.1.187

42. Caglar, D., Gurses, N., Hyperbolic Number Forms of the Euler-Savary Equation,

Internatıonal Electronıc Journal Of Geometry, Volume:15, Issue:2, Pages:343-

358, DOI:10.36890/IEJG.1127959, 2022.

43. V. Galabov, R. Roussev and B. Paleva-kadiyska, "Synthesis of Four-Bar Linkages

by Four Infinitely Close Relative Positions and Pressure Angle", El-Cezeri, vol. 10,

no. 2, pp. 401-408, May. 2023, doi:10.31202/ecjse.1239481

• Akyiğit M., Eren K., Kösal H.H, “Tubular Surfaces with Modified Orthogonal

Frame”, Honam Mathematical Journal, 43(3), 453-463, 2021.

44. Kazan, A. Altin, M., “Canal Hypersurfaces Accordıng to Generalızed Bıshop

Frames In 4-Space.” Facta Unıversıtatıs-Serıes Mathematıcs And Informatıcs,

37(4), 721-738 DOI: 10.22190/FUMI220331050K, 2022.

45. Altın, M., et al. “Tubular hypersurfaces according to extended Darboux frame

field of first kind in E4.” Turkish Journal of Science 7.2 (2022): 75-84

• Kelleci, Eren K. “On Evolution of Some Associated Type Ruled Surfaces.”

Math. Sci. Appl. E-Notes, 8(2), 178-186, (2020).

46. E. Karaca, "An Examination for the Intersection of Two Ruled

Surfaces", Fundamental Journal of Mathematics and Applications, vol. 6, no. 1,

pp. 70-77, Mar. 2023, doi:10.33401/fujma.1235668

47. Çalışkan A. Characterizations of Unit Darboux Ruled Surface with Quaternions.

JNT. 2023; (42): 43-54.

• S. Senyurt, K. Eren “On Ruled Surfaces with a Sannia Frame in Euclidean

3-space.” Kyungpook Mathematical Journal 2022; 62(3): 509-531.

48. Çalışkan A. Characterizations of Unit Darboux Ruled Surface with Quaternions.

JNT. 2023; (42): 43-54.

• K. Eren and S. Ersoy, “A Comparison of Original and Inverse Motion in

Minkowski Plane,” Applications and Applied Mathematics: An

International Journal, vol. 40, Special Issue no. 5, pp. 56-67, 2019.

49. V. Galabov, R. Roussev and B. Paleva-kadiyska, "Synthesis of Four-Bar Linkages by Four

Infinitely Close Relative Positions and Pressure Angle", El-Cezeri, vol. 10, no. 2, pp. 401-408,

May. 2023, doi:10.31202/ecjse.1239481

A5.2. Ulusal

A5.2.2. Hakemli bilimsel dergilerde yapılan atıf

• Ersoy, S., Eren K., “Timelike Tangent Developable Surfaces and Bonnet

Surface”, Abstract and Applied Analysis, Volume 2016, Article ID

6837543, 7 pages.

1. Şekerci, Gülşah Aydın, and Muradiye Çimdiker (2019): "Bonnet canal surfaces."

Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 21(61)

195-200.

• Şenyurt S., Eren K., “Spacelike Asli Normalli Spacelike Anti-Salkowski

Eğrisinin Frenet Çatısına Göre Smarandache Eğrileri”, Gümüşhane Fen

Bilimleri Enstitüsü Dergisi, 10(1), 2020,251-260.

2. Aksan B., Gür Mazlum S. On the pole indicatrix curve of the spacelike Salkowski

curve with timelike principal normal in Lorentzian 3-space. Gümüşhane

Üniversitesi Fen Bilimleri Dergisi. 2022; 12(4): 1168-1179.

3. Özen, K. E. , Tosun, M. & Avcı, K. (2022). Type 2-Positional Adapted Frame and Its

Application to Tzitzeica and Smarandache Curves . Karatekin University Journal of

Science, 1 (1), 42-53. Retrieved from

https://dergipark.org.tr/en/pub/ckujsf/issue/74696/1227334

• Eren K., Kosal, H.H., “Evolution of Space Curves and the Special Ruled

Surfaces with Modified Orthogonal Frame”, AIMS Mathematics, 5(3),

2027– 2039, (2020).

4. Kusak Samancı, H. & Sevinç, M. (2022). Characterizations of The Ruled Surfaces

due to Modified Frame . Erzincan University Journal of Science and Technology , 15

(2) , 420-441 . DOI: 10.18185/erzifbed.997998

• Akyiğit M., Eren K., Kösal H.H, “Tubular Surfaces with Modified Orthogonal

Frame”, Honam Mathematical Journal, 43(3), 453-463, 2021.

5. Kusak Samancı, H. & Sevinç, M. (2022). Characterizations of The Ruled Surfaces

due to Modified Frame . Erzincan University Journal of Science and Technology , 15

(2) , 420-441 . DOI: 10.18185/erzifbed.997998

6. F. Almaz and M. Alyamac Kulahci, "The Physical Concepts on Special Tube Surfaces

Generated by Normal Curves in Galilean 3-Space", Bitlis Eren Üniversitesi Fen

Bilimleri Dergisi, vol. 12, no. 1, pp. 1-9, Mar. 2023,

doi:10.17798/bitlisfen.1057385

• Eren K., Ersoy, S., “Characterizations of Tzitzeica Curves Using Bishop

Frames.” Math Meth Appl Sci. 2021; 1 - 14.

https://doi.org/10.1002/mma.7483.

7. Özen, K. E., Tosun, M. & Avcı, K. (2022). Type 2-Positional Adapted Frame and Its

Application to Tzitzeica and Smarandache Curves. Karatekin University Journal of

Science, 1 (1), 42-53. Retrieved from

https://dergipark.org.tr/en/pub/ckujsf/issue/74696/1227334

• K. Eren, On The Harmonıc Evolute Surfaces Of Tubular Surfaces In

Euclıdean 3-Space, Journal of Science and Arts, 2(55), 449-460, 2021.

8. F. Almaz and M. Alyamac Kulahci, "The Physical Concepts on Special Tube Surfaces

Generated by Normal Curves in Galilean 3-Space", Bitlis Eren Üniversitesi Fen

Bilimleri Dergisi, vol. 12, no. 1, pp. 1-9, Mar. 2023,

doi:10.17798/bitlisfen.1057385

• Kelleci, Eren K. “On Evolution of Some Associated Type Ruled Surfaces.”

Math. Sci. Appl. E-Notes, 8(2), 178-186, (2020).

9. F. Almaz and M. Alyamac Kulahci, "The Physical Concepts on Special Tube Surfaces

Generated by Normal Curves in Galilean 3-Space", Bitlis Eren Üniversitesi Fen

Bilimleri Dergisi, vol. 12, no. 1, pp. 1-9, Mar. 2023,

doi:10.17798/bitlisfen.1057385

• K. Eren, Ö. G. Yıldız, M. Akyiğit, Tubular surfaces associated with framed

base curves in Euclidean 3-space, Math. Meth. Appl. Sci., (2021), 1- 9,

https://doi.org/10.1002/mma.7590.

10. F. Almaz and M. Alyamac Kulahci, "The Physical Concepts on Special Tube Surfaces

Generated by Normal Curves in Galilean 3-Space", Bitlis Eren Üniversitesi Fen

Bilimleri Dergisi, vol. 12, no. 1, pp. 1-9, Mar. 2023,

doi:10.17798/bitlisfen.1057385

B. ARAŞTIRMA PROJELERİ

B2. Ulusal

B2. 1. F20B847, FATSA FEN LİSESİ BİLİM FUARI, Bilim ve Toplum, Yürütücü, Sonuçlandı,

BİLİM TOPLUM, bilim ve Toplum Başkanlığı Programlar Müdürlüğü, Projeye

Katılma/Ayrılma Tarihleri: 01.09.2020- 31.12.2021, Proje Başlangıç/Bitiş Tarihleri:

01.09.2020- 31.12.2021.

B2. 2. 121F289, Eliptik Kuaterniyon Matris Teorisinin Geliştirilmesi Ve Uygulamaları,

1002- Hızlı Destek, Araştırmacı/Uzman, Yürürlükte, ARDEB, MFAG- Matematik Fizik

Araştırma Destek Grubu, Projeye Katılma/Ayrılma Tarihleri: 01.11.2021- 01.11.2022,

Proje Başlangıç/Bitiş Tarihleri: 01.11.2021- 01.11.2022.

B2.3. Üniversite BAP (Bilimsel Araştırma Projeleri) tarafından desteklenen proje

yürütücülüğü

B4.2. Üniversite BAP (Bilimsel Araştırma Projeleri) tarafından desteklenen

projede görev alma

C. EĞİTİM ÖĞRETİM ETKİNLİKLERİ

C1 Tez Yöneticiliği

C1.1. Doktora tezi yönetmek (Tamamlanmış)

C1.3. Yüksek lisans tezi yönetmek (Tamamlanmış)

C2. Ders Verme

C2.1. Ön lisans, Lisans, lisansüstü, tıpta uzmanlık öğrencisi dersi dahil

C2.1.1. BTB1032017251, Matematik, Ordu Üniversitesi, Fatsa Deniz Bilimleri Fakültesi /

Balıkçılık Teknolojisi Mühendisliği / Lisans, 2022-2023.

C2.2. Staj kurulu ve/veya ders kurulu başkanlığı/yıl

C2.3. Koordinatörlük/yıl

C3. Danışmanlıklar

C3.1. Ön lisans- lisans öğrenci danışmanlığı, sınıf danışmanlığı

C3.2. Lisansüstü ders danışmanlığı

D. DİĞER BİLİMSEL VE SANATSAL ETKİNLİKLER

D1. Toplantı Etkinlikleri

D1.1 Uluslararası

D1.1.1. Sempozyum ve kongre gibi etkinliklerde

D1.1.1.2. Bilim kurulu üyeliği

D1.1.1.3. Düzenleme kurulu üyeliği

D1.1.1.3.1. 11th International Eurasian Conference on Mathematical Sciences and

Applications, İstanbul, Turkey, 29.08.2022-01.09.2022.

D1.2. Ulusal

D1.2.1. Ulusal sempozyum ve kongre düzenlenmesi gibi etkinliklerde

D1.2.1.3. Düzenleme kurulu üyeliği

D6. HAKEMLİK

D6.1. SCI (Science Citation Index)- Expanded kapsamındaki dergilerde hakemlik

D6.1.1. Applied Mathematics & Information Sciences,2021.

D6.1.2. Complexity, 2022.

D6.1.3. Engineering Computations, 2023.

D6.1.4. Advances in Mathematical Physics, 2023.

D6.1.5. Demonstratio Mathematica, 2023.

D6.2. Yukarıdaki indekslere girmeyen diğer uluslararası dergilerde hakemlik

D6.2.1. Conference Proceeding of Science Technology, 2020.(4)

D6.2.2. Communications in Advanced Mathematical Sciences, 2020.(1)

D6.2.3. Konuralp Journal Mathematics (KJM), 2021.(1)

D6.2.4. Universal Journal of Mathematics and Appications, 2020, 2021,2021.(3)

D6.2.5. Maltepe Journal of Mathematics, 2021.(1)

D6.2.6. Mathematical Sciences and Applications E-Notes, 2022,2022,2023.(3)

D6.2.7. Fundamental Journal of Mathematics and Applications, 2023.(1)

D6.2.8. Journal of New Theory,2022.(1)

D6.2.9. El-Cezeri,2023.(1)

D6.2.10. İnternational Electronic Journal of Geometry,2023.(1)

D6.3. Ulusal hakemli bilimsel dergilerde

D6.3.1. Erzincan Fen Bilimleri Enstitüsü Dergisi, 2020,2021.(2)

D6.3.2. Ordu University Journal of Science and Tecnology, 2020.(1)

D6.3.3. Karatekin Üniversitesi Fen Fakültesi Dergisi,2022.

D6.3.4. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi,2023.

D7. EDİTÖRLÜK

D7.2. Dergiler

D7.2.1. SCI (Science Citation Index) Expanded kapsamındaki dergilerde

editörlük

D7.2.2.Yukarıdaki indekslere girmeyen diğer uluslararası dergilerde editörlük

D7.2.2.1. Conference Proceeding of Science Technology, 2019

D7.2.2.2. Fundamental Journal of Mathematics and Applications, 2023

D7.2.2.3. Universal Journal of Mathematics and Applications, 2023

D7.2.3. Ulusal hakemli bilimsel dergilerde editörlük

D8. YURT DIŞI DENEYİMİ

D8.1. Bilimsel etkinlikler için yurt dışında bulunmak (Burslar hariç)

E1. ÖDÜLLER

E1.1. Bilim Alanında Ödüller

E1.1.2. Ulusal

E1.1.2.1. Bilimsel kuruluşlarca verilen bilim, hizmet ve teşvik ödülleri

1. Üstün Başarı Belgesi, Fatsa Kaymakamlığı, 2022.

2. Başarı Belgesi, Millî Eğitim Bakanlığı, 2022.

3. Başarı Belgesi, Millî Eğitim Bakanlığı, 2022.

4. Başarı Belgesi, Fatsa Kaymakamlığı, 2020.

5. Ödül Belgesi, Ordu Valiliği, 2018.

6. Üstün Başarı Belgesi, Fatsa Kaymakamlığı, 2018.

7. Başarı Belgesi, Fatsa Kaymakamlığı, 2017.

8. Başarı Belgesi, Fatsa Kaymakamlığı, 2015.

9. Başarı Belgesi, Kabataş Kaymakamlığı, 2014.

10. Takdir Belgesi, Kabataş Kaymakamlığı, 2010.

11. Aylıkla Ödüllendirme Belgesi, Millî Eğitim Bakanlığı, 2009.

12. Teşekkür Belgesi, Kabataş Kaymakamlığı, 2009.

13. Teşekkür Belgesi, Kabataş İlçe Milli Eğitim Müdürlüğü, 2009.

14. Terfi Ödül Belgesi, Milli Eğitim Bakallığı, 2009.

15. Takdir Belgesi, Kabataş Kaymakamlığı, 2008.