ÖZGEÇMİŞ VE ESERLER LİSTESİ
ÖZGEÇMİŞ
Adı Soyadı: Kemal EREN
Doğum Tarihi: 02.10.1981
İletişim: 05057726525/kemaleren52@gmail.com
Öğrenim Durumu:
Derece Bölüm/Program Üniversite Yıl
Lisans
Matematik Öğrt. Böl.
Ondokuz Mayıs
Üniversitesi 1997–2001
Y. Lisans FBE Matematik EABD Sakarya Üniversitesi 2010–2012
Doktora FBE Matematik EABD Sakarya Üniversitesi 2015–2019
Doçent Doktor Matematik/Geometri Üniversitelerarası Kurul
Başkanlığı
2023-…
Yüksek Lisans Tez Başlığı (özeti ekte) : Timelike Tanjant Açılabilir Yüzeyler ve
Bonnet Yüzeyler
Tez Danışmanı: Prof. Dr. Soley ERSOY
Doktora Tezi/S.Yeterlik Çalışması/Tıpta Uzmanlık Tezi Başlığı ( özeti ekte) :
Lorentz Düzleminde Burmester Teorisi
Tez Danışmanı: Prof. Dr. Soley ERSOY
Görevler:
Görev Unvanı Görev Yeri Yıl
Matematik Öğretmeni Gölköy Karahasan Ortaokulu, Ordu 2001–2004
Matematik Öğretmeni Kabataş Osman Özyurt Ortaokulu, Ordu 2004–2006
Matematik Öğretmeni Kabataş Anadolu Lisesi, Ordu 2006–2014
Matematik Öğretmeni Fatsa Lokman Hekim Mesleki ve Teknik
Anadolu Lisesi, Ordu
2014-2016
Matematik Öğretmeni Fatsa Fen Lisesi, Ordu 2016-...
A. ARAŞTIRMA VE YAYIN ETKİNLİKLERİ
A1. Makaleler
A1.1 Uluslararası hakemli dergilerde yayımlanan
A1.1. SCI (Science Citation Index) Expanded indekslerince taranan dergilerde
yayımlanan
A1.1.1.Tam metin özgün makale
A1.1.1.1. Eren K., Kosal, H.H., “Evolution of Space Curves and the Special Ruled
Surfaces with Modified Orthogonal Frame”, AIMS Mathematics, 5(3), 2027– 2039, (2020).
(SCI-E. Q1)
A1.1.1.2. Eren K., Ersoy, S., “Characterizations of Tzitzeica Curves Using Bishop
Frames.” Math Meth Appl Sci. 2022; 45(18), 12046-12059.
https://doi.org/10.1002/mma.7483 (SCI-E. Q1)
A1.1.1.3. Eren K., Yıldız, ÖG, Akyiğit, M. “Tubular surfaces associated with framed base
curves in Euclidean 3-space.” Math Meth App Sci. 2022; 45(18), 12110-12118.
https://doi.org/10.1002/mma.7590 (SCI-E. Q1)
A1.1.1.4. Y. Li, K. Eren, K. H. Ayvacı, S. Ersoy. “Simultaneous characterizations of
partner ruled surfaces using Flc frame”. AIMS Mathematics, 2022, 7(11): 20213-20229.
doi: 10.3934/math.20221106 (SCI-E. Q1)
A1.1.1.5. Y. Li, K. Eren, K. H. Ayvacı, S. Ersoy. “The developable surfaces with pointwise
1-type Gauss map of Frenet type framed base curves in Euclidean 3-space”. AIMS
Mathematics, 2023, 8(1): 2226-2239. doi: 10.3934/math.2023115 (SCI-E. Q1)
A1.1.1.6. Y. Li, K. Eren, S. Ersoy (2023). On simultaneous characterizations of
partner-ruled surfaces in Minkowski 3-space. AIMS Mathematics, 2023, 8(9):
22256-22273. doi: 10.3934/math.20231135 (SCI-E. Q1)
A1.1.1.7. N. Popovic, K. Eren, A. Savic, S. Ersoy (2023). Framed curve families ınduced
by the coupled dispersionless type equations: real and complex, Mathematics, 2023,
11(16), 3531. doi: 10.3390/math11163531 (SCI-E. Q1)
A1.1.1.8. K. Eren, K. Yesmakhanova, S. Ersoy, R. Myrzakulov, “Involute evolute curve
family induced by the coupled dispersionless equations”, Optik, Volume 270, 2022,
169915, https://doi.org/10.1016/j.ijleo.2022.169915 (SCI-E. Q2)
A1.1.1.9. Eren K., Ersoy, S., “Revisiting Burmester theory with complex forms of
Bottema’s instantaneous invariants”, Complex Variables and Elliptic Equations, 2017, Vol.
62, No. 4, 431–437. (SCI-E. Q3)
A1.1.1.10. Eren K., Ersoy, S., “Complex Coupled Dispersionless Equations in Minkowski
3- Space. “Complex Variables and Elliptic Equations, DOI:
10.1080/17476933.2022.2097665 (SCI-E. Q3)
A1.1.1.11. K. Eren. “Forming coupled dispersionless equations of families of Bertrand
curves”. Turkish Journal of Mathematics, 2023, 47(1): 87-97.
https://doi.org/10.55730/1300-0098.3347 (SCI-E. Q3)
A1.1.1.12. Eren K., “Motion of Inextensible Quaternionic Curves and Modified Korteweg
de Vries Equation”. Analele Stiintifice ale Universitatii Ovidius din Constanta, Math. Series,
30(2), 91-101, 2022. (SCI-E. Q4)
A1.1.1.13. Eren K., “Geometry of Coupled Dispersionless Equations with Mannheim
Curves”. Analele Stiintifice ale Universitatii Ovidius din Constanta, Math. Series, 31(3),
2023. (SCI-E. Q4)
A1.2. SCI (Science Citation Index)- Expanded, SSCI (Social Science Citation
Index), A&HCI (Arts and Humanities Citations Index) dışındaki indeksler
tarafından taranan dergilerde yayımlanan
A1.2.1. Tam metin özgün makale
A1.2.1.1. Ersoy, S., Eren K., “Timelike Tangent Developable Surfaces and Bonnet
Surface”, Abstract and Applied Analysis, Volume 2016, Article ID 6837543, 7 pages.
(SCOPUS)
A1.2.1.2. Eren K., Ersoy, S., “Burmester theory in Cayley–Klein planes with affine
base”, J. Geom. 109 (2018), no. 3, Art. 45, 12 pp. (ESCI)
A1.2.1.3. Eren K., Ersoy, S., “Cardan Positions in the Lorentzian Plane”, Honam Math.
J. 40 (2018), no. 1, 187–198. (ESCI)
A1.2.1.4. Eren K., Ersoy, S., “A Comparison of Original and Inverse Motion in
Minkowski Plane”, Applications and Applied Mathematics:An International Journal. 40
(2019), Special Issue No. 5, 56–67. (ESCI)
A1.2.1.5 A. Kelleci, Eren K. “On Evolution of Some Associated Type Ruled Surfaces.”
Math. Sci. Appl. E-Notes, 8(2), 178-186, (2020). (TR-DİZİN)
A1.2.1.6. Eren K., “On the Harmonıc Evolute Surfaces of Tubular Surfaces in Euclıdean
3-Space.” Journal of Science and Arts, Year 21, No. 2(55), pp. 449-460, (2021) (ESCI)
A1.2.1.7. Akyiğit M., Eren K., Kösal H.H, “Tubular Surfaces with Modified Orthogonal
Frame”, Honam Mathematical Journal, 43(3), 453-463, 2021, (ESCI)
A1.2.1.8. Kösal H.H, Eren K., “Numerical Algorithm for Solving General Linear Elliptic
Quaternionic Matrix Equations”, Fundamental Journal of Mathematics and Applications,
4(3), 180- 186, 2021. (TR-DİZİN)
A1.2.1.9. Şenyurt S., Eren K., “Some Smarandache Curves Constructed by a Spacelike
Salkowski Curve with Timelike Principal Normal”. Punjab University Journal of
Mathematics, 53(9),679-690, 2021. (ESCI)
A1.2.1.10. Eren K., “New Representation of Hasimoto Surfaces with the Modified
Orthogonal Frame”, Konuralp Journal of Mathematics, 10(1), 69-72, 2022.
(MATHSCİNET )
A1.2.1.11. Şenyurt S. Eren K. Ayvacı K. H., “A Study on Inextensible Flows of
Polynomial Curves with Flc Frame”, Applications and Applied Mathematics: An
International Journal (AAM), 17(1),123-133,2022. (ESCI)
A1.2.1.12. Eren, K., K. H. Ayvaci, and S. Senyurt. “On Characterızatıons Of Spherıcal
Curves Usıng Frenet Lıke Curve Frame.” Honam Mathematical Journal 44, no. 3
(September 1, 2022): 391–401. doi:10.5831/HMJ.2022.44.3.391. (ESCI)
A1.2.1.13. Eren, K. “A Study Of The Evolution Of Space Curves With Modified
Orthogonal Frame In Euclidean 3-Space.” Applied Mathematics E-Notes, 22(2022), 281-
286. (ESCI)
A1.2.1.14. S. Senyurt, K. Eren “On Ruled Surfaces with a Sannia Frame in Euclidean 3-
space.” Kyungpook Mathematical Journal 2022; 62(3): 509-531. (ESCI)
A1.2.1.15. K. Eren, K.H. Ayvaci, S. Senyurt. On Ruled Surfaces Constructed by the
Evolutıon of a Polynomıal Space Curve J. of Science and Arts 2023; 23(1): 77-90. (ESCI)
A1.2.1.16. K Eren, S.Ersoy, On Curve Pairs of Tzitzeica Type, Advances and Applications
in Mathematical Sciences, 22(9), 2009-2021, 2023, (ESCI)
A1.2.1.17. T Erisir, K Eren Spinor Representation of Directional q-Frame, SIGMA Journal
of Engineering and Science, (in press) 2023, (ESCI)
A1.2.1.18. K Eren, S. Şenyurt, H.K. Ayvacı, Characterizations of Tzitzeica Curves Using
Flc Frame, SIGMA Journal of Engineering and Science, (in press) 2023, (ESCI)
A1.4. Ulusal hakemli dergilerde yayımlanan
A1.4.1. Tam metin özgün makale
A1.4.1.1. Ersoy S., Eren K., “Sabit Olmayan Ortalama Eğrilikli Timelike Bonnet
Yüzeyler”, SAÜ. Fen Bilimleri Dergisi, 17. Cilt, 1. Sayı, 2013, 113-118, (TR-DİZİN).
A1.4.1.2. Eren K., “Lorentziyan Düzlem Hareketinde İkinci Eğrilik Merkezi”, BEÜ Fen
Bilimleri Dergisi, 8(4), 2019, 1154-1161, (TR-DİZİN).
A1.4.1.3. Şenyurt S., Eren K., “Spacelike Asli Normalli Spacelike Anti-Salkowski
Eğrisinin Frenet Çatısına Göre Smarandache Eğrileri”, Gümüşhane Fen Bilimleri Enstitüsü
Dergisi, 10(1), 2020,251-260, (TR-DİZİN).
A1.4.1.4. Şenyurt S., Eren K., “Smarandache Curves of Spacelike Salkowski Curve with
a Spacelike Principal Normal According to Frenet Frame”, Erzincan University Journal of
Science and Technology, 13(specıal ıssue -ı), 7-17, 2020, (TR- DİZİN).
A1.4.1.5. Şenyurt S., Eren K., Smarandache Curves of Spacelike Anti-Salkowski Curve
with a Timelike Principal Normal According to Frenet Frame. Erzincan Üniversitesi Fen
Bilimleri Enstitüsü Dergisi, 13(2), 404-416, 2020, (TR-DİZİN).
A1.4.1.6. Eren K., A. Kelleci, “On the Harmonic Evolute Surfaces of Hasimoto
Surfaces.” Adıyaman University Journal of Science, 11(1), 87-100, 2021, (TR-DİZİN).
A2. Bildiriler
Uluslararası
A2.1. Kongre, sempozyum, panel, çalıştay gibi bilimsel, sanatsal toplantılarda
sunulan ve tam metni yayımlanan
A2.1.2. Sözlü bildiri
A2.1.2.1. Eren K., Ersoy S., Circling-Point Curve in Minkowski Plane, 7th International
Eurasian Conference on Mathematical Sciences and Applications, Kyiv, Ukraine,
p. 179, 28-31 August 2018.
A2.1.2.2. Eren K., Ersoy S., Geometric Interpretation of Curvature Circles in Minkowski
Plane, 8th International Eurasian Conference on Mathematical Sciences and Applications,
Baku, Azerbaijan, p. 230, 27-30 August 2019.
A2.1.2.3. Şenyurt S., Eren K., Timelike Anti-Salkowski Eğrisinin Frenet Vektörlerinden
Eldeedilen Smarandache Eğrileri, Karadeniz 1.Uluslararası Multidisipliner Çalışmalar
Kongresi, p.667, 26.03.2019.
A2.1.2.4. Şenyurt S., Eren K., Timelike Salkowski Eğrisinin Frenet Vektörlerinden Elde
edilen Smarandache Eğrileri, Karadeniz 1.Uluslararası Multidisipliner Çalışmalar
Kongresi, p.680, 26.03.2019.
A2.2. Kongre, sempozyum, panel, çalıştay gibi bilimsel, sanatsal toplantılarda
sunulan ve özeti yayımlanan
A2.2.2. Sözlü bildiri
A2.2.2.1. Eren K., Ersoy S., “Applications of Complex Form of Instantaneous Invariants
to Planar Path-Curvature Theory”, 14th International Geometry Symposium, Pamukkale
University Denizli, Turkey, p. 123, May 25-28, 2016.
A2.2.2.2. Eren K., Ersoy S., “Burmester Theory in Affine Cayley-Klein Planes”, 15th
International Geometry Symposium, Amasya University, Amasya, Turkey, p.71, July 3-
6, 2017.
A2.2.2.3. Eren K., Ersoy S., Ergut, M., “On Cardan Position for the Lorentzian Plane
Motion of a Rigid Body”, 6th International Eurasian Conference on Mathematical
Sciences and Applications, Budapest, Hungary, p. 214, 15-18 August 2017.
A2.2.2.4. Eren K., Ersoy S., The Circling-Point Curve of Inverse Motion in Minkowski
Plane, 16th International Geometry Symposium, Manisa Celal Bayar University, Manisa-
TURKEY, p. 93. July 4-7, 2018.
A2.2.2.5. Eren K., Ersoy S., Instantaneous Kinematics of a Planar Two-Link Open Chain
in the Complex Plane 17th International Geometry Symposium Erzincan Binali Yildirim
University, Erzincan-TURKEY, p. 98., June 19-22, 2019.
A2.2.2.6. Şenyurt S., Eren K., Smarandache Curves of Spacelike Salkowski Curve with
a Spacelike Principal Normal According to Frenet Frame 17th International Geometry
Symposium Erzincan Binali Yildirim University, Erzincan-TURKEY, p. 97., June 19-22,
2019.
A2.2.2.7. Eren K., New Representation of Hasimoto Surfaces According to the Modified
Orthogonal Frame, 8th International Eurasian Conference on Mathematical Sciences and
Applications, Baku, Azerbaijan, p. 232, 27-30 August 2019.
A2.2.2.8. Eren K., Geometry of Complex Coupled Dispersionless and Complex Short
Pulse Equations by Using Bishop Frames, 8th International Eurasian Conference on
Mathematical Sciences and Applications, Baku, Azerbaijan, p. 234, 27-30 August 2019.
A2.2.2.9. Eren K., Ersoy S., On Curve Pairs of Tzitzeica Type., 9th International
Eurasian Conference on Mathematical Sciences and Applications, Skopje-North
Macedonıa, p. 136-137, 25-28 August 2020.
A2.2.2.10. K. Eren, M. Ö. Yıldız, M.Akyiğit,. Tubular Surfaces associated with Framed
Base Curves., 9th International Eurasian Conference on Mathematical Sciences and
Applications, Skopje-North Macedonıa, p. 134-135, 25-28 August 2020.
A2.2.2.11. K. Eren, S. Ersoy, “Moving Quaternionic Curves and Modified Korteweg-de
Vries Equation”, 18th International Geometry Symposium, İnönü University, Malatya-
TURKEY, p. 55., July 12-13, 2021.
A2.2.2.12. K. Eren, “Framed Developable Surfaces with Pointwise 1-Type Gauss Map”,
10th International Eurasian Conference on Mathematical Sciences and Applications,
Sakarya, Turkey, p. 147-148, 25-27 August 2021.
A2.2.2.13. K. Eren, S. Ersoy, “Hasimoto Surfaces with Pointwise 1- Type Gauss Map”,
10th International Eurasian Conference on Mathematical Sciences and Applications,
Sakarya, Turkey, p. 149-150, 25-27 August 2021.
A2.2.2.14. K. H. Ayvacı, K. Eren, S. Şenyurt, On ruled surfaces generated by dırectıon
curves wıth sannıa frame and theır characterızatıons, 6th International Conference on
Computational Mathematics and Engineering Sciences (CMES-2022), Ordu, Turkey, p.
314, 20-22.05.2022.
A2.2.2.15. K. H. Ayvacı, K. Eren, S. Şenyurt, A study on ınextensıble flows of
polynomıal curves wıth Flc frame, 6th International Conference on Computational
Mathematics and Engineering Sciences (CMES-2022), Ordu, Turkey, p. 315, 20-
22.05.2022.
A2.2.2.16. K. H. Ayvacı, K. Eren, S. Şenyurt, On Characterizations of Spherical Curves
Using Frenet Like Curve Frame, 19th International Geometry Symposium, Trakya
University, Edirne- TURKEY, p. 88., June 27-30, 2022.
A2.2.2.17. K. Eren, S. Ersoy, “Geometry of Coupled Dispersionless Equations with
Involute Evolute Curves”, 19th International Geometry Symposium, Trakya University,
Edirne- TURKEY, p. 89., June 27-30, 2022.
A2.2.2.18. H. H. Kösal, K. Eren, M. Akyiğit, “Euler and De Moivre´s Formulas for
Fundamental Matrices of Elliptic Quaternions”, 19th International Geometry Symposium,
Trakya University, Edirne- TURKEY, p. 82., June 27-30, 2022.
A2.2.2.19. H. H. Kosal, K. Eren, M. Akyigit, B. Celik, “Elliptic Quaternion Matrix Theory
and Its Applications”, 11th International Eurasian Conference on Mathematical Sciences
and Applications, Istanbul, Turkey, p. 165-166, 29 August—1 September, 2022.
A2.2.2.20. K. Eren, S. Ersoy, “Geometry of coupled dispersionless equations with
Mannheim curves”, 11th International Eurasian Conference on Mathematical Sciences
and Applications, Istanbul, Turkey, p. 170-171, 29 August—1 September, 2022.
A2.2.2.21. A. Çalışkan, K. Eren, S. Ersoy, “Dual magnetic curves and flux ruled
surfaces”, 2nd Internatıonal E-Conference On Mathematıcal And Statıstıcal Scıences: A
Selçuk Meetıng (ICOMSS´23), Selçuk University, Konya, Turkey, p. 64, June 5 – June 7,
2023.
Ulusal
A2.5. Kongre, sempozyum, panel, çalıştay gibi bilimsel, sanatsal toplantılarda
sunulan ve özeti yayımlanan
A2.5.2. Sözlü bildiri
A2.5.2.1. Ersoy S., Eren K., “Timelike tangent developable surfaces and Bonnet
surfaces” XI Geometri Sempozyumu, Ordu Üniversitesi, Ordu, 1-5 Temmuz 2013.
A2.5.2.2. Şenyurt S., Eren K., “Timelike Normalli Spacelike Salkowski Eğrilerinden Elde
Edilen Smarandache Eğrileri" 14. Ankara Matematik Günleri (AMG 2019) Gazi
Universitesi, Ankara, p. 68, 28-29 Haziran 2019.
A2.5.2.3. Şenyurt S., Eren K., “Frenet Çatısına Göre Timelike Normalli Spacelike Anti-
Salkowski Eğrisinden Elde Edilen Smarandache Eğrileri”, 32.Ulusal Matematik
Sempozyumu Ondokuz Mayıs Üniversitesi, Samsun, p.101, 31 Ağustos-3 Eylül 2019.
A2.5.2.4. Şenyurt S., Eren K., “Frenet Çatısına Göre Spacelike Normalli Spacelike Anti-
Salkowski Eğrisinden Elde Edilen Smarandache Eğrileri”, 32.Ulusal Matematik
Sempozyumu Ondokuz Mayıs Üniversitesi, Samsun, p.102, 31 Ağustos-3 Eylül 2019.
A3. Kitaplar
A3.1. Uluslararası yayınevleri ya da kuruluşlarca basılmış
A3.1.2. Kitapta bölüm yazarlığı
A3.1.2.1. Kemal Eren, "Geometry of coupled dispersionless equations by using bishop
frames". TBILISI- MATHEMATICS, Sciendo, 2020, pp. 38-47.
https://doi.org/10.2478/9788395793882-004.
A4. Çevirmenlik
A4.2. Yabancı dilden
A4.2.2.Kitapta bölüm
Atıflar
A5.1. Uluslararası
A5.1.1. Bilimsel kitapta yapılan atıf
• K. Eren, S. Ersoy, Revisiting Burmester theory with complex forms of
Bottema’s instantaneous invariants, Complex Var. Elliptic Equ., 62(4)
(2017), 431-437.
1. Cera, M., Cirelli, M., Pennestrì, E., Valentini, P. P., & Shanmukhasundaram, V. R.
(2021). Recent developments in higher path curvature analysis. In Advances in
Industrial Machines and Mechanisms (pp. 27-37). Springer (Uluslararası tanınmış
kitap)
2. Ersoy S., Tosun M., " Rolling Circles of Motions: Yesterday and Today." In book:
Models and Theories in Social Systems, 2019, DOI:10.1007/978-3-030-00084-
4_11. (Uluslararası tanınmış kitap)
• Eren K., Kosal, H.H., “Evolution of Space Curves and the Special Ruled
Surfaces with Modified Orthogonal Frame”, AIMS Mathematics, 5(3),
2027– 2039, (2020). (SCI-Exp)
3. Tuğba DEMĠRKIRAN, Torsiyon ile Modifiye Edilmiş Ortogonal Çatıda Eğriler Ve
Regle Yüzeyler, Erciyes Üniversitesi, Doktora Tezi, Kayseri, 2022.(Ulusal Tez)
• Ersoy, S., Eren K., “Timelike Tangent Developable Surfaces and Bonnet
Surface”, Abstract and Applied Analysis, Volume 2016, Article ID
6837543, 7 pages.
4. Yüksekdağ, Burcu. Lorentz uzayında bonnet yüzeyleri, Tez (Doktora)- Yıldız Teknik
Üniversitesi, Fen Bilimleri Enstitüsü, 2022
• K. Eren. ve S. Ersoy, "Timelike Bonnet surfaces with non-constant
curvature,"Sakarya University Journal of Science, vol. 17, no. 1, pp. 113-
118, 2013.
5. Yüksekdağ, Burcu. Lorentz uzayında bonnet yüzeyleri, Tez (Doktora)- Yıldız Teknik
Üniversitesi, Fen Bilimleri Enstitüsü, 2022
A5.1.2. SCI (Science Citation Index) Expanded kapsamındaki dergilerde yapılan
atıf
• K. Eren, S. Ersoy, Revisiting Burmester theory with complex forms of
Bottema’s instantaneous invariants, Complex Var. Elliptic Equ., 62(4)
(2017), 431-437.
1. Cera, M., and E. Pennestrì. (2019): "The mechanical generation of planar curves
by means of point trajectories, line and circle envelopes: a unified treatment of the
classic and generalized Burmester problem." Mechanism and Machine Theory, 142,
103580. (SCI-EXP)
2. Cera, M., and E. Pennestrì. (2019): "Higher-order curvature analysis of planar
curves enveloped by straight lines." Mechanism and Machine Theory, 134, 213-
223. (SCI-EXP)
3. Cera, M., and E. Pennestrì. (2018):” Generalized Burmester points computation by
means of Bottema’s instantaneous invariants and intrinsic geometry”, Mechanism
and Machine Theory, 129, 316-335, (SCI-EXP).
4. M. Cera, M. Cirelli, E. Pennestrì, R. Salerno, P.P. Valentini (2022):” Path-
Constrained Points synthesis of symmetric mechanisms for prescribed higher-order
curvature features”, Mechanism and Machine Theory, Volume 167, 104562, (SCI-
EXP).
• Eren K., Kosal, H.H., “Evolution of Space Curves and the Special Ruled
Surfaces with Modified Orthogonal Frame”, AIMS Mathematics, 5(3),
2027– 2039, (2020). (SCI-Exp)
5. H. K. Elsayied, A. A. Altaha, Ayman Elsharkawy (2021):” On Some Special Curves
According to the Modified Orthogonal Frame in Minkowski 3-space E 3 1, Revista
Kasmera 49(1):2-15.
6. Ayman Elsharkawy, Hoda El-Sayied, Abdallah altaha (2021): Bertrand Curves with
the Modified Orthogonal Frame in Minkowski 3-space E31, Revista de Educación
(Madrid),392(6):43: 55 (SSCI).
7. Kiziltug S., Cakmak A., Erisir T., Mumcu G., On tubular surfaces with modified
orthogonal frame in Galilean space G3, Thermal Science, 2022, 26(Spec. issue 2),
571-581.
8. N. Yüksel, B. Saltık. On inextensible ruled surfaces generated via a curve derived
from a curve with constant torsion. AIMS Mathematics, 2023, 8(5): 11312-11324.
doi: 10.3934/math.2023573
• Akyiğit M., Eren K., Kösal H.H, “Tubular Surfaces with Modified Orthogonal
Frame”, Honam Mathematical Journal, 43(3), 453-463, 2021.
9. Kiziltug S., Cakmak A., Erisir T., Mumcu G., On tubular surfaces with modified
orthogonal frame in Galilean space G3, Thermal Science, 2022, 26(Spec. issue 2),
571-581.
10. Mustafa Bilici and Gokhan Koseoglu, Tubular involutive surfaces with Frenet frame
in Euclidean 3- space, Maejo Int. J. Sci. Technol. 2023, 17(02), 96-106
• K. Eren, On The Harmonıc Evolute Surfaces Of Tubular Surfaces In
Euclıdean 3-Space, Journal of Science and Arts, 2(55), 449-460, 2021.
11. E. M. Solouma, I. Al-Dayel, Harmonic evolute surface of tubular surfaces via B-
Darboux frame in Euclidean 3-space, Adv. Math. Phys., 2021 (2021), 5269655.
https://doi.org/10.1155/2021/5269655.
• Eren K., Kelleci Akbay A. On the Harmonic Evolute Surfaces of Hasimoto
Surfaces. Adıyaman University Journal of Science. 2021; 11(1): 87-100.
12. E. M. Solouma, I. Al-Dayel, Harmonic evolute surface of tubular surfaces via B-
Darboux frame in Euclidean 3-space, Adv. Math. Phys., 2021 (2021), 5269655.
https://doi.org/10.1155/2021/5269655.
13. Bendehiba Senoussi and Alev Kelleci Akbay, “Characterizations of Hasimoto
Surfaces in Euclidean 3-spaces 3
E ” Appl. Math. Inf. Sci. 16, No. 5, 689-694
(2022).
14. Ayman Elsharkawy, Clemente Cesarano, Abdelrhman Tawfiq, Abdul Aziz Ismail.
The non-linear Schrödinger equation associated with the soliton surfaces in
Minkowski 3-space. AIMS Mathematics, 2022, 7(10): 17879-17893. doi:
10.3934/math.2022985
• Yanlin Li, Kemal Eren, Kebire Hilal Ayvacı, Soley Ersoy. Simultaneous
characterizations of partner ruled surfaces using Flc frame. AIMS
Mathematics, 2022, 7(11): 20213-20229. doi: 10.3934/math.20221106
15. Saha A, Azami S, Breaz D, Rapeanu E, Hui SK. Evolution for First Eigenvalue of
LT,f on an Evolving Riemannian Manifold. Mathematics. 2022; 10(23):4614.
https://doi.org/10.3390/math10234614
16. Santu Dey, Certain results of κ-almost gradient Ricci-Bourguignon soliton on
pseudo-Riemannian manifolds, Journal of Geometry and Physics, Volume 184,
2023, 104725, https://doi.org/10.1016/j.geomphys.2022.104725.
17. Wang Y, Yang L, Liu Y, Chang Y. Singularities for Focal Sets of Timelike Sabban
Curves in de Sitter 3-Space. Symmetry. 2022; 14(12):2471.
https://doi.org/10.3390/sym14122471
18. Chen Z, Li Y, Sarkar S, Dey S, Bhattacharyya A. Ricci Soliton and Certain Related
Metrics on a Three-Dimensional Trans-Sasakian Manifold. Universe. 2022;
8(11):595. https://doi.org/10.3390/universe8110595
19. Li, Y., Mondal, S., Dey, S. et al. A Study of Conformal η-Einstein Solitons on Trans-
Sasakian 3-Manifold. J Nonlinear Math Phys (2022).
https://doi.org/10.1007/s44198-022-00088-z
20. Wang Y, Yang L, Li P, Chang Y. Singularities of Osculating Developable Surfaces of
Timelike Surfaces along Curves. Symmetry. 2022; 14(11):2251.
https://doi.org/10.3390/sym14112251
21. Siddiqi MD, Alkhaldi AH, Khan MA, Siddiqui AN. Conformal η-Ricci Solitons on
Riemannian Submersions under Canonical Variation. Axioms. 2022; 11(11):594.
https://doi.org/10.3390/axioms11110594
22. Li Y, Nazra SH, Abdel -Baky RA. Singularity Properties of Timelike Sweeping
Surface in Minkowski 3-Space. Symmetry. 2022; 14(10):1996.
https://doi.org/10.3390/sym14101996
23. Yanlin Li, A. A. Abdel-Salam, M. Khalifa Saad. Primitivoids of curves in Minkowski
plane[J]. AIMS Mathematics, 2023, 8(1): 2386-2406. doi: 10.3934/math.2023123
24. Ma R, Pei D. The ∗-Ricci Operator on Hopf Real Hypersurfaces in the Complex
Quadric. Mathematics. 2023; 11(1):90. https://doi.org/10.3390/math11010090
25. Li Y, Chen Z, Nazra SH, Abdel -Baky RA. Singularities for Timelike Developable
Surfaces in Minkowski 3-Space. Symmetry. 2023; 15(2):277.
https://doi.org/10.3390/sym15020277
26. Li Y, Aldossary MT, Abdel-Baky RA. Spacelike Circular Surfaces in Minkowski 3-
Space. Symmetry. 2023; 15(1):173. https://doi.org/10.3390/sym15010173
27. Li, Y., Gür Mazlum, S., Senyurt, S. The Darboux Trihedrons of Timelike Surfaces in
the Lorentzian 3-Space. Int. J. Geom. Methods Mod. Phys., 20(02), 2350030, 1–
35, 2023. https://doi.org/10.1142/S0219887823500305
28. Santu Dey, Conformal Ricci soliton and almost conformal Ricci soliton in
paracontact geometry, Int. J. Geom. Methods Mod. Phys., 20(03), 2350041, 2023.
29. Li Y, Çalışkan A. Quaternionic Shape Operator and Rotation Matrix on Ruled
Surfaces. Axioms. 2023; 12(5):486. https://doi.org/10.3390/axioms12050486
30. Gökhan Köseoğlu, Mustafa Bilici, Involutive sweeping surfaces with Frenet frame in
Euclidean3-space, Heliyon, 9(8), E18822, 2023,
https://doi.org/10.1016/j.heliyon.2023.e18822
• Yanlin Li, Kemal Eren, Kebire Hilal Ayvacı, Soley Ersoy. The developable
surfaces with pointwise 1-type Gauss map of Frenet type framed base
curves in Euclidean 3-space[J]. AIMS Mathematics, 2023, 8(1): 2226-
2239. doi: 10.3934/math.2023115
31. Saha A, Azami S, Breaz D, Rapeanu E, Hui SK. Evolution for First Eigenvalue of
LT,f on an Evolving Riemannian Manifold. Mathematics. 2022; 10(23):4614.
https://doi.org/10.3390/math10234614
32. Santu Dey, Certain results of κ-almost gradient Ricci-Bourguignon soliton on
pseudo-Riemannian manifolds, Journal of Geometry and Physics,Volume
184,2023,104725, https://doi.org/10.1016/j.geomphys.2022.104725.
33. Wang Y, Yang L, Liu Y, Chang Y. Singularities for Focal Sets of Timelike Sabban
Curves in de Sitter 3-Space. Symmetry. 2022; 14(12):2471.
https://doi.org/10.3390/sym14122471
34. Chen Z, Li Y, Sarkar S, Dey S, Bhattacharyya A. Ricci Soliton and Certain Related
Metrics on a Three-Dimensional Trans-Sasakian Manifold. Universe. 2022;
8(11):595. https://doi.org/10.3390/universe8110595
35. Yanlin Li, A. A. Abdel-Salam, M. Khalifa Saad. Primitivoids of curves in Minkowski
plane[J]. AIMS Mathematics, 2023, 8(1): 2386-2406. doi: 10.3934/math.2023123
36. Li Y, Chen Z, Nazra SH, Abdel -Baky RA. Singularities for Timelike Developable
Surfaces in Minkowski 3-Space. Symmetry. 2023; 15(2):277.
https://doi.org/10.3390/sym15020277
37. Li Y, Aldossary MT, Abdel-Baky RA. Spacelike Circular Surfaces in Minkowski 3-
Space. Symmetry. 2023; 15(1):173. https://doi.org/10.3390/sym15010173
38. Ma R, Pei D. The ∗-Ricci Operator on Hopf Real Hypersurfaces in the Complex
Quadric. Mathematics. 2023; 11(1):90. https://doi.org/10.3390/math11010090
39. Li, Y. and Tuncer, O. O.. On (contra)pedals and (anti)orthotomics of frontals in de
Sitter 2-space, Math. Meth. Appl. Sci. (2023), 1– 15.
https://doi:10.1002/mma.9173
40. Li Y, Srivastava SK, Mofarreh F, Kumar A, Ali A. Ricci Soliton of CRCR-Warped
Product Manifolds and Their Classifications. Symmetry. 2023; 15(5):976.
https://doi.org/10.3390/sym15050976
41. N. Yüksel, B. Saltık. On inextensible ruled surfaces generated via a curve derived
from a curve with constant torsion. AIMS Mathematics, 2023, 8(5): 11312-11324.
doi: 10.3934/math.2023573
42. Li, Y., Ganguly, D. Kenmotsu Metric as Conformal η-Ricci Soliton. Mediterr. J.
Math. 20, 193 (2023). https://doi.org/10.1007/s00009-023-02396-0
43. Al-Jedani A, Abdel-Baky R. Sweeping Surfaces Due to Conjugate Bishop Frame in
3-Dimensional Lie Group. Symmetry. 2023; 15(4):910.
https://doi.org/10.3390/sym15040910
44. Mihai I, Mohammed M. Optimal Inequalities for Submanifolds in Trans-Sasakian
Manifolds Endowed with a Semi-Symmetric Metric Connection. Symmetry. 2023;
15(4):877. https://doi.org/10.3390/sym15040877
45. Yanlin Li, Ali. H. Alkhaldi, Akram Ali, R. A. Abdel-Baky, M. Khalifa Saad.
Investigation of ruled surfaces and their singularities according to Blaschke frame
in Euclidean 3-space. AIMS Mathematics, 2023, 8(6): 13875-13888. doi:
10.3934/math.2023709
46. Bin Turki N. A Note on Incompressible Vector Fields. Symmetry. 2023;
15(8):1479. https://doi.org/10.3390/sym15081479
47. Al-Dayel I. Estimation of Ricci Curvature for Hemi-Slant Warped Product
Submanifolds of Generalized Complex Space Forms and Their
Applications. Symmetry. 2023; 15(6):1156.
https://doi.org/10.3390/sym15061156
48. Li Y, Çalışkan A. Quaternionic Shape Operator and Rotation Matrix on Ruled
Surfaces. Axioms. 2023; 12(5):486. https://doi.org/10.3390/axioms12050486
49. Almoneef AA, Abdel-Baky RA. Spacelike Lines with Special Trajectories and
Invariant Axodes. Symmetry. 2023; 15(5):1087.
https://doi.org/10.3390/sym15051087
50. Chen X, Liu H. Two Special Types of Curves in Lorentzian α-Sasakian 3-
Manifolds. Symmetry. 2023; 15(5):1077. https://doi.org/10.3390/sym15051077
51. Yanlin Li, Piscoran Laurian-Ioan, Lamia Saeed Alqahtani, Ali H. Alkhaldi, Akram Ali.
Zermelo´s navigation problem for some special surfaces of rotation[J]. AIMS
Mathematics, 2023, 8(7): 16278-16290. doi: 10.3934/math.2023833
52. A. A. Abdel-Salam, M. I. Elashiry, M. Khalifa Saad. On the equiform geometry of
special curves in hyperbolic and de Sitter planes[J]. AIMS Mathematics, 2023,
8(8): 18435-18454. doi: 10.3934/math.2023937
53. Li Y, Srivastava SK, Mofarreh F, Kumar A, Ali A. Ricci Soliton of CR-Warped
Product Manifolds and Their Classifications. Symmetry. 2023; 15(5):976.
https://doi.org/10.3390/sym15050976
54. Li, Y., Ganguly, D. Kenmotsu Metric as Conformal η�-Ricci Soliton. Mediterr. J.
Math. 20, 193 (2023). https://doi.org/10.1007/s00009-023-02396-0
55. Al-Jedani A, Abdel-Baky R. Sweeping Surfaces Due to Conjugate Bishop Frame in
3-Dimensional Lie Group. Symmetry. 2023; 15(4):910.
https://doi.org/10.3390/sym15040910
56. Mihai I, Mohammed M. Optimal Inequalities for Submanifolds in Trans-Sasakian
Manifolds Endowed with a Semi-Symmetric Metric Connection. Symmetry. 2023;
15(4):877. https://doi.org/10.3390/sym15040877
57. Yanlin Li, Ali. H. Alkhaldi, Akram Ali, R. A. Abdel-Baky, M. Khalifa Saad.
Investigation of ruled surfaces and their singularities according to Blaschke frame
in Euclidean 3-space. AIMS Mathematics, 2023, 8(6): 13875-13888. doi:
10.3934/math.2023709
58. Mustafa Bilici and Gokhan Koseoglu, Tubular involutive surfaces with Frenet frame
in Euclidean 3- space, Maejo Int. J. Sci. Technol. 2023, 17(02), 96-1060
59. Li Y, Kumara HA, Siddesha MS, Naik DM. Characterization of Ricci Almost Soliton
on Lorentzian Manifolds. Symmetry. 2023; 15(6):1175.
https://doi.org/10.3390/sym15061175
• Yanlin Li, Kemal Eren, Soley Ersoy. On simultaneous characterizations of
partner-ruled surfaces in Minkowski 3-space. AIMS Mathematics, 2023,
8(9): 22256-22273. doi: 10.3934/math.20231135
60. Bin Turki N. A Note on Incompressible Vector Fields. Symmetry. 2023;
15(8):1479. https://doi.org/10.3390/sym15081479
61. Erkan E. Concircular Vector Fields on Radical Anti-Invariant Lightlike Hypersurfaces
of Almost Product-like Statistical Manifolds. Symmetry. 2023; 15(8):1531.
https://doi.org/10.3390/sym15081531
62. Li Y, Gupta MK, Sharma S, Chaubey SK. On Ricci Curvature of a Homogeneous
Generalized Matsumoto Finsler Space. Mathematics. 2023; 11(15):3365.
https://doi.org/10.3390/math11153365
63. Khan MNI, Mofarreh F, Haseeb A, Saxena M. Certain Results on the Lifts from an
LP-Sasakian Manifold to Its Tangent Bundle Associated with a Quarter-Symmetric
Metric Connection. Symmetry. 2023; 15(8):1553.
https://doi.org/10.3390/sym15081553
64. Li Y, Güler E. A Hypersurfaces of Revolution Family in the Five-Dimensional
Pseudo-Euclidean Space 5
2E , Mathematics. 2023; 11(15):3427.
https://doi.org/10.3390/math11153427
• Kemal Eren, "Geometry of coupled dispersionless equations by using
bishop frames". TBILISI- MATHEMATICS, Sciendo, 2020, pp. 39-48.
https://doi.org/10.2478/9788395793882-004.
65. Jun Yu, Bo Ren, Ping Liu, Jia-Li Zhou, "CTE Solvability, Nonlocal Symmetry, and
Interaction Solutions of Coupled Integrable Dispersionless System", Complexity,
vol. 2022, Article ID 3221447, 7 pages, 2022.
https://doi.org/10.1155/2022/3221447
66. Kebire Hilal Ayvaci and Gulnur Saffak Atalay, Surface Family with a Common
Mannheim B-Pair Asymptotic Curve, International Journal of Geometric Methods in
Modern Physics, https://doi.org/10.1142/S0219887823502298
• Kemal Eren & Soley Ersoy (2022) Complex coupled dispersionless
equations in Minkowski 3-space, Complex Variables and Elliptic Equations,
DOI: 10.1080/17476933.2022.2097665
67. Jun Yu, Bo Ren, Ping Liu, Jia-Li Zhou, "CTE Solvability, Nonlocal Symmetry, and
Interaction Solutions of Coupled Integrable Dispersionless System", Complexity,
vol. 2022, Article ID 3221447, 7 pages, 2022.
https://doi.org/10.1155/2022/3221447
• S. Şenyurt and E. Kemal, Smarandache curves of spacelike anti-Salkowski
curve with a spacelike principal normal according to Frenet
frame, Gümüşhane Univ., J. Sci. Technol. 10 (2020) 251–260.
68. Li, Y., Gür Mazlum, S., Senyurt, S. The Darboux Trihedrons of Timelike Surfaces in
the Lorentzian 3-Space. Int. J. Geom. Methods Mod. Phys., 20(02), 2350030, 1–
35,2023. https://doi.org/10.1142/S0219887823500305
• Kelleci, Eren K. “On Evolution of Some Associated Type Ruled Surfaces.”
Math. Sci. Appl. E-Notes, 8(2), 178-186, (2020).
69. N. Yüksel, B. Saltık. On inextensible ruled surfaces generated via a curve derived
from a curve with constant torsion. AIMS Mathematics, 2023, 8(5): 11312-11324.
doi: 10.3934/math.2023573
• Eren K., Ersoy, S., “Characterizations of Tzitzeica Curves Using Bishop
Frames.” Math Meth Appl Sci. 2021; 1- 14.
https://doi.org/10.1002/mma.7483 (SCI- Exp)
70. Kebire Hilal Ayvaci and Gulnur Saffak Atalay, Surface Family with a Common
Mannheim B-Pair Asymptotic Curve, International Journal of Geometric Methods in
Modern Physics, https://doi.org/10.1142/S0219887823502298
• K. Eren, K. Yesmakhanova, S. Ersoy, R. Myrzakulov, “Involute evolute
curve family induced by the coupled dispersionless equations”, Optik,
Volume 270, 2022, 169915, https://doi.org/10.1016/j.ijleo.2022.169915
71. G. Köseoğlu, M. Bilici, Involutive sweeping surfaces with Frenet frame in
Euclidean3-space, Heliyon, 9(8), E18822, 2023,
https://doi.org/10.1016/j.heliyon.2023.e18822
72. Qian, J., Sun, M. & Zhang, B. Involutes of null Cartan curves and their
representations in Minkowski 3-space. Soft Comput (2023).
https://doi.org/10.1007/s00500-023-08848-9
• Akyiğit M., Eren K., Kösal H.H, “Tubular Surfaces with Modified Orthogonal
Frame”, Honam Mathematical Journal, 43(3), 453-463, 2021.
73. M. Bilici and G. Koseoglu, Tubular involutive surfaces with Frenet frame in
Euclidean 3- space, Maejo Int. J. Sci. Technol. 2023, 17(02), 96-1060
A5.1.3.Yukarıdaki indekslere girmeyen diğer uluslararası dergilerde yapılan atıf
• Ersoy, S., Eren K., “Timelike Tangent Developable Surfaces and Bonnet
Surface”, Abstract and Applied Analysis, Volume 2016, Article ID
6837543, 7 pages.
1. Özen, Kahraman Esen. (2020): "Siacci´s theorem for Frenet curves in Minkowski 3-
space." Mathematical Sciences and Applications E-Notes 8(1), 159-167.
2. Aslan, Muradiye Çimdiker, and Gülşah Aydın Şekerci. (2021): "An Examination of
The Condition under which a Conchoidal Surface is a Bonnet Surface in the
Euclidean 3-Space." Facta Universitatis-Series Mathematics and Informatics 36(3),
627-641.
3. Özen K. E. On the Trigonometric and p -Trigonometric Functions of Elliptical
Complex Variables. Communications in Advanced Mathematical Sciences. 2020;
3(3): 143-154.
• Yanlin Li, Kemal Eren, Kebire Hilal Ayvacı, Soley Ersoy. The developable
surfaces with pointwise 1-type Gauss map of Frenet type framed base
curves in Euclidean 3-space[J]. AIMS Mathematics, 2023, 8(1): 2226-
2239. doi: 10.3934/math.2023115
4. B.-Y. Chen, E. Güler, Y. Yaylı and H. H. Hacısalihoğlu, Differential geometry of 1-
type submanifolds and submanifolds with 1-type Gauss map. Int. Electron. J.
Geom. 16(1), 1-43, (2023).
5. Bahar Dogan Yazıcı, Sıddıka Ozkaldı Karakus, and Murat Tosun. On adjoınt curves
of framed curves and some ruled surfaces, Honam Mathematical J. 45 (2023), No.
3, pp. 380–396. https://doi.org/10.5831/HMJ.2023.45.3.380.
• K. Eren, On The Harmonıc Evolute Surfaces Of Tubular Surfaces In
Euclıdean 3-Space, Journal of Science and Arts, 2(55), 449-460, 2021.
6. Yavuz, Ayşe, Constructıon Of Bınormal Motıon And Characterızatıon Of Curves On
Surface By System Of Dıfferentıal Equatıons For Posıtıon Vector, Journal of Science
and Arts, 21(4), (2021): 1043-1056. DOI: 10.46939/J.Sci.Arts-21.4-a16.
• Kemal Eren. "Geometry of coupled dispersionless equations by using
bishop frames". TBILISI- MATHEMATICS, Sciendo, 2020, pp. 39-48.
https://doi.org/10.2478/9788395793882-004.
7. Özen K. E., Tosun M. On the Resolution of the Acceleration Vector According to
Bishop Frame. Universal Journal of Mathematics and Applications. 2021; 4(1): 26-
32.
• K. Eren, Ö. G. Yıldız, M. Akyiğit, Tubular surfaces associated with framed
base curves in Euclidean 3-space, Math. Meth. Appl. Sci., (2021), 1- 9,
https://doi.org/10.1002/mma.7590.
8. Akyiğit M., Yıldız Ö. G. On the Framed Normal Curves in Euclidean 4-space.
Fundamental Journal of Mathematics and Applications. 2021; 4(4): 258-263.
• K. Eren, S. Ersoy, Revisiting Burmester theory with complex forms of
Bottema’s instantaneous invariants, Complex Var. Elliptic Equ., 62(4)
(2017), 431-437.
9. Özen, Kahraman Esen. (2020): "On the trigonometric and p-trigonometric
functions of elliptical complex variables." Communications in Advanced
Mathematical Sciences 3(3), 143-154.
10. Özen, Kahraman Esen, and Murat Tosun. (2021): "Fibonacci Elliptic
Biquaternions." Fundamental Journal of Mathematics and Applications 4(1), 10-16.
11. V. Galabov , R. Roussev and B. Paleva-kadiyska , "Synthesis of Four-Bar Linkages
by Four Infinitely Close Relative Positions and Pressure Angle", El-Cezeri, vol. 10,
no. 2, pp. 401-408, May. 2023, doi:10.31202/ecjse.1239481
• Eren K., Ersoy, S., “Burmester theory in Cayley–Klein planes with affine
base”, J. Geom. 109 (2018), no. 3, Art. 45, 12 pp.
12. Özen K. On the Trigonometric and p-Trigonometric Functions of Elliptical Complex
Variables. Communications in Advanced Mathematical Sciences. 2020; 3(3): 143-
154.
13. Özen K. E., Tosun M. Fibonacci Elliptic Biquaternions. Fundamental Journal of
Mathematics and Applications. 2021; 4(1): 10-16.
14. V. Galabov , R. Roussev and B. Paleva-kadiyska , "Synthesis of Four-Bar Linkages
by Four Infinitely Close Relative Positions and Pressure Angle", El-Cezeri, vol. 10,
no. 2, pp. 401-408, May. 2023, doi:10.31202/ecjse.1239481
• Eren K., Kosal, H.H., “Evolution of Space Curves and the Special Ruled
Surfaces with Modified Orthogonal Frame”, AIMS Mathematics, 5(3),
2027– 2039, (2020). (SCI-Exp)
15. Özen K. E., Tosun M. A New Moving Frame for Trajectories with Non-Vanishing
Angular Momentum. Journal of Mathematical Sciences and Modelling. 2021; 4(1):
7-18.
16. Gür Mazlum S., Şenyurt S., Bektaş M. Salkowski Curves and Their Modified
Orthogonal Frames in E3, Journal of New Theory. 2022; (40): 12-26.
17. Özel Ş., Bektaş M. On the Characterisations of Curves with Modified Orthogonal
Frame in E3, Journal of New Theory. 2022; (40): 54-59.
18. Gur Mazlum S. and Bektas¸ M. On the modified orthogonal frames of the non-unit
speed curves in Euclidean 3-Space E3, Turkish Journal of Science.2022, 7(2), 58-
74.
19. G. U. Kaymanlı, C. Ekici, Evolutions of the Ruled Surfaces along a Spacelike Space
Curve, Punjab University Journal of Mathematics (2022), 54(4), 221-232,
https://doi.org/10.52280/pujm.2022.540401
20. E. Karaca, "An Examination for the Intersection of Two Ruled Surfaces",
Fundamental Journal of Mathematics and Applications, vol. 6, no. 1, pp. 70-77,
Mar. 2023, doi:10.33401/fujma.1235668
21. Çalışkan A. Characterizations of Unit Darboux Ruled Surface with Quaternions.
Journal of New Theory. 2023; (42): 43-54.
• Şenyurt S., Eren K., “Spacelike Asli Normalli Spacelike Anti-Salkowski
Eğrisinin Frenet Çatısına Göre Smarandache Eğrileri”, Gümüşhane Fen
Bilimleri Enstitüsü Dergisi, 10(1), 2020,251-260.
22. ÖZEN K. Siacci´s Theorem for Frenet Curves in Minkowski 3-Space. Math. Sci.
Appl. E-Notes. 2020; 8(1): 159-167.
23. Özen K. E., Tosun M. A New Moving Frame for Trajectories on Regular Surfaces.
Ikonion Journal of Mathematics. 2021; 3(1): 20-34.
24. Emad Solouma, Equiform spacelike Smarandache curves of anti-eqiform Salkowski
curve according to equiform frame, International Journal of Mathematical Analysis,
Vol. 15, 2021, no. 1, 43-59, doi: 10.12988/ijma.2021.912141
25. S. Şenyurt, D. Canli, E. Çan, S. G. Mazlum, Some special Smarandache ruled
surfaces by Frenet frame in E3-II Honam Mathematical Journal, Vol.44, No.4,
pp.594-617, December, 2022
26. Kılıçoglu, Ş., Şenyurt, S. & Gür Mazlum, S. (2022). The Frenet Vectors and the
Curvatures of Curves N−T∗B∗ in E3 . Hagia Sophia Journal of Geometry, 4 (2), 11-
18. Retrieved from https://dergipark.org.tr/en/pub/hsjg/issue/74307/1214403
27. Şenyurt, Süleyman and Ayvacı, Kebire Hilal and Canlı, Davut, Smarandache
Curves According to Flc-frame in Euclidean 3-space, Fundamentals of
Contemporary Mathematical Sciences, Volume 4, Issue 1, 16- 30,2023.
28. Yüksel N., Saltık B., Karacan M. K. The Characterizations of The Curve Generated
by a Curve with Constant Torsion. Konuralp J. Math., 2023; 11(1): 1-7.
29. Şenyurt, Süleyman; Ayvacı, Kebire Hilal; and Canlı, Davut (2023). (R2026) Special
Smarandache Ruled Surfaces According to Flc Frame in E^3, Applications and
Applied Mathematics: An International Journal (AAM), Vol. 18, Iss. 1, Article 16.
18 pages. https://digitalcommons.pvamu.edu/aam/vol18/iss1/16
30. B. Aksan and S. G. Mazlum, On the spherıcal ındıcatrıx curves of the spacelıke
salkowskı curve wıth tımelıke prıncıpal normal ın Lorentzıan 3-space, Honam
Mathematical J. 45 (2023), No. 3, pp. 513–541.
https://doi.org/10.5831/HMJ.2023.45.3.513
• Şenyurt S., Eren K., “Smarandache Curves of Spacelike Salkowski Curve
with a Spacelike Principal Normal According to Frenet Frame”, Erzincan
University Journal of Science and Technology, 13(specıal ıssue -ı), 7- 17,
2020.
31. ÖZEN K. Siacci´s Theorem for Frenet Curves in Minkowski 3-Space. Math. Sci.
Appl. E-Notes. 2020; 8(1): 159-167.
32. S. Şenyurt, D. Canlı, E. Çan, S. G. Mazlum, Some special Smarandache ruled
surfaces by Frenet frame in E3-II Honam Mathematical Journal, Vol.44, No.4,
pp.594-617, December, 2022
33. Solouma, E. “Equiform spacelike Smarandache curves of anti-eqiform Salkowski
curve according to equiform frame.” International Journal of Mathematical Analysis
15.1 (2021): 43-59.
34. Şenyurt, S., et al. “Smarandache curves according to Flc-frame in Euclidean 3-
space.” Fundamentals of Contemporary Mathematical Sciences 4.1 (2023): 16- 30.
• Eren K., Ersoy, S., “Characterizations of Tzitzeica Curves Using Bishop
Frames.” Math Meth Appl Sci. 2021; 1 - 14.
https://doi.org/10.1002/mma.7483 (SCI- Exp)
35. Bahar Doğan Yazıcı, Sıddıka Özkaldı Karakuş, Murat Tosun, On Framed Tzıtzeıca
Curves In Euclıdean Space, FACTA UNIVERSITATIS (NIS) Ser. Math. Inform.,
2022, 37(2), 307-319. https://doi.org/10.22190/FUMI211025021D.
36. Özen KE, İşbilir Z, Tosun M (2022) Characterization of Tzitzeica curves using
positional adapted frame. Konuralp Journal of Mathematics 10:260-268
• Şenyurt S., Eren K., “Smarandache Curves of Spacelike Anti-Salkowski
Curve with a Timelike Principal Normal According to Frenet Frame”,
Erzincan University Journal of Science and Technology, 13(2), 404- 416,
2020.
37. S. Şenyurt, D. Canlı, E. Çan, S. G. Mazlum, Some special Smarandache ruled
surfaces by Frenet frame in E3-II Honam Mathematical Journal, Vol.44, No.4,
pp.594-617, December, 2022
38. Şenyurt, S., et al. “Smarandache curves according to Flc-frame in Euclidean 3-
space.” Fundamentals of Contemporary Mathematical Sciences 4.1 (2023): 16- 30.
39. Özen, K. “Siacci´s theorem for Frenet curves in Minkowski 3-space.” Mathematical
Sciences and Applications E-Notes 8.1 (2020): 159-167.
• Şenyurt S., Eren K., “Some Smarandache Curves Constructed From A
Spacelıke Salkowskı Curve Wıth Tımelıke Prıncıpal Normal”, Punjab
Unıversıty Journal Of Mathematıcs, Vol 53, No 9, 679-690,2021.
40. S. Şenyurt, D. Canlı, E. Çan, S. G. Mazlum, Some special Smarandache ruled
surfaces by Frenet frame in E3-II Honam Mathematical Journal, Vol.44, No.4,
pp.594-617, December, 2022
41. Şenyurt, Süleyman and Ayvacı, Kebire Hilal and Canlı, Davut, Smarandache
Curves According to Flc-frame in Euclidean 3-space, Fundamentals of
Contemporary Mathematical Sciences, Volume 4, Issue 1, 16- 30,2023.
• Eren K., Ersoy, S., “Cardan posıtıons in the Lorentzıan plane.” Honam
Mathematical Journal, 40(1), 2018,187-198.
DOI10.5831/HMJ.2018.40.1.187
42. Caglar, D., Gurses, N., Hyperbolic Number Forms of the Euler-Savary Equation,
Internatıonal Electronıc Journal Of Geometry, Volume:15, Issue:2, Pages:343-
358, DOI:10.36890/IEJG.1127959, 2022.
43. V. Galabov, R. Roussev and B. Paleva-kadiyska, "Synthesis of Four-Bar Linkages
by Four Infinitely Close Relative Positions and Pressure Angle", El-Cezeri, vol. 10,
no. 2, pp. 401-408, May. 2023, doi:10.31202/ecjse.1239481
• Akyiğit M., Eren K., Kösal H.H, “Tubular Surfaces with Modified Orthogonal
Frame”, Honam Mathematical Journal, 43(3), 453-463, 2021.
44. Kazan, A. Altin, M., “Canal Hypersurfaces Accordıng to Generalızed Bıshop
Frames In 4-Space.” Facta Unıversıtatıs-Serıes Mathematıcs And Informatıcs,
37(4), 721-738 DOI: 10.22190/FUMI220331050K, 2022.
45. Altın, M., et al. “Tubular hypersurfaces according to extended Darboux frame
field of first kind in E4.” Turkish Journal of Science 7.2 (2022): 75-84
• Kelleci, Eren K. “On Evolution of Some Associated Type Ruled Surfaces.”
Math. Sci. Appl. E-Notes, 8(2), 178-186, (2020).
46. E. Karaca, "An Examination for the Intersection of Two Ruled
Surfaces", Fundamental Journal of Mathematics and Applications, vol. 6, no. 1,
pp. 70-77, Mar. 2023, doi:10.33401/fujma.1235668
47. Çalışkan A. Characterizations of Unit Darboux Ruled Surface with Quaternions.
JNT. 2023; (42): 43-54.
• S. Senyurt, K. Eren “On Ruled Surfaces with a Sannia Frame in Euclidean
3-space.” Kyungpook Mathematical Journal 2022; 62(3): 509-531.
48. Çalışkan A. Characterizations of Unit Darboux Ruled Surface with Quaternions.
JNT. 2023; (42): 43-54.
• K. Eren and S. Ersoy, “A Comparison of Original and Inverse Motion in
Minkowski Plane,” Applications and Applied Mathematics: An
International Journal, vol. 40, Special Issue no. 5, pp. 56-67, 2019.
49. V. Galabov, R. Roussev and B. Paleva-kadiyska, "Synthesis of Four-Bar Linkages by Four
Infinitely Close Relative Positions and Pressure Angle", El-Cezeri, vol. 10, no. 2, pp. 401-408,
May. 2023, doi:10.31202/ecjse.1239481
A5.2. Ulusal
A5.2.2. Hakemli bilimsel dergilerde yapılan atıf
• Ersoy, S., Eren K., “Timelike Tangent Developable Surfaces and Bonnet
Surface”, Abstract and Applied Analysis, Volume 2016, Article ID
6837543, 7 pages.
1. Şekerci, Gülşah Aydın, and Muradiye Çimdiker (2019): "Bonnet canal surfaces."
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 21(61)
195-200.
• Şenyurt S., Eren K., “Spacelike Asli Normalli Spacelike Anti-Salkowski
Eğrisinin Frenet Çatısına Göre Smarandache Eğrileri”, Gümüşhane Fen
Bilimleri Enstitüsü Dergisi, 10(1), 2020,251-260.
2. Aksan B., Gür Mazlum S. On the pole indicatrix curve of the spacelike Salkowski
curve with timelike principal normal in Lorentzian 3-space. Gümüşhane
Üniversitesi Fen Bilimleri Dergisi. 2022; 12(4): 1168-1179.
3. Özen, K. E. , Tosun, M. & Avcı, K. (2022). Type 2-Positional Adapted Frame and Its
Application to Tzitzeica and Smarandache Curves . Karatekin University Journal of
Science, 1 (1), 42-53. Retrieved from
https://dergipark.org.tr/en/pub/ckujsf/issue/74696/1227334
• Eren K., Kosal, H.H., “Evolution of Space Curves and the Special Ruled
Surfaces with Modified Orthogonal Frame”, AIMS Mathematics, 5(3),
2027– 2039, (2020).
4. Kusak Samancı, H. & Sevinç, M. (2022). Characterizations of The Ruled Surfaces
due to Modified Frame . Erzincan University Journal of Science and Technology , 15
(2) , 420-441 . DOI: 10.18185/erzifbed.997998
• Akyiğit M., Eren K., Kösal H.H, “Tubular Surfaces with Modified Orthogonal
Frame”, Honam Mathematical Journal, 43(3), 453-463, 2021.
5. Kusak Samancı, H. & Sevinç, M. (2022). Characterizations of The Ruled Surfaces
due to Modified Frame . Erzincan University Journal of Science and Technology , 15
(2) , 420-441 . DOI: 10.18185/erzifbed.997998
6. F. Almaz and M. Alyamac Kulahci, "The Physical Concepts on Special Tube Surfaces
Generated by Normal Curves in Galilean 3-Space", Bitlis Eren Üniversitesi Fen
Bilimleri Dergisi, vol. 12, no. 1, pp. 1-9, Mar. 2023,
doi:10.17798/bitlisfen.1057385
• Eren K., Ersoy, S., “Characterizations of Tzitzeica Curves Using Bishop
Frames.” Math Meth Appl Sci. 2021; 1 - 14.
https://doi.org/10.1002/mma.7483.
7. Özen, K. E., Tosun, M. & Avcı, K. (2022). Type 2-Positional Adapted Frame and Its
Application to Tzitzeica and Smarandache Curves. Karatekin University Journal of
Science, 1 (1), 42-53. Retrieved from
https://dergipark.org.tr/en/pub/ckujsf/issue/74696/1227334
• K. Eren, On The Harmonıc Evolute Surfaces Of Tubular Surfaces In
Euclıdean 3-Space, Journal of Science and Arts, 2(55), 449-460, 2021.
8. F. Almaz and M. Alyamac Kulahci, "The Physical Concepts on Special Tube Surfaces
Generated by Normal Curves in Galilean 3-Space", Bitlis Eren Üniversitesi Fen
Bilimleri Dergisi, vol. 12, no. 1, pp. 1-9, Mar. 2023,
doi:10.17798/bitlisfen.1057385
• Kelleci, Eren K. “On Evolution of Some Associated Type Ruled Surfaces.”
Math. Sci. Appl. E-Notes, 8(2), 178-186, (2020).
9. F. Almaz and M. Alyamac Kulahci, "The Physical Concepts on Special Tube Surfaces
Generated by Normal Curves in Galilean 3-Space", Bitlis Eren Üniversitesi Fen
Bilimleri Dergisi, vol. 12, no. 1, pp. 1-9, Mar. 2023,
doi:10.17798/bitlisfen.1057385
• K. Eren, Ö. G. Yıldız, M. Akyiğit, Tubular surfaces associated with framed
base curves in Euclidean 3-space, Math. Meth. Appl. Sci., (2021), 1- 9,
https://doi.org/10.1002/mma.7590.
10. F. Almaz and M. Alyamac Kulahci, "The Physical Concepts on Special Tube Surfaces
Generated by Normal Curves in Galilean 3-Space", Bitlis Eren Üniversitesi Fen
Bilimleri Dergisi, vol. 12, no. 1, pp. 1-9, Mar. 2023,
doi:10.17798/bitlisfen.1057385
B. ARAŞTIRMA PROJELERİ
B2. Ulusal
B2. 1. F20B847, FATSA FEN LİSESİ BİLİM FUARI, Bilim ve Toplum, Yürütücü, Sonuçlandı,
BİLİM TOPLUM, bilim ve Toplum Başkanlığı Programlar Müdürlüğü, Projeye
Katılma/Ayrılma Tarihleri: 01.09.2020- 31.12.2021, Proje Başlangıç/Bitiş Tarihleri:
01.09.2020- 31.12.2021.
B2. 2. 121F289, Eliptik Kuaterniyon Matris Teorisinin Geliştirilmesi Ve Uygulamaları,
1002- Hızlı Destek, Araştırmacı/Uzman, Yürürlükte, ARDEB, MFAG- Matematik Fizik
Araştırma Destek Grubu, Projeye Katılma/Ayrılma Tarihleri: 01.11.2021- 01.11.2022,
Proje Başlangıç/Bitiş Tarihleri: 01.11.2021- 01.11.2022.
B2.3. Üniversite BAP (Bilimsel Araştırma Projeleri) tarafından desteklenen proje
yürütücülüğü
B4.2. Üniversite BAP (Bilimsel Araştırma Projeleri) tarafından desteklenen
projede görev alma
C. EĞİTİM ÖĞRETİM ETKİNLİKLERİ
C1 Tez Yöneticiliği
C1.1. Doktora tezi yönetmek (Tamamlanmış)
C1.3. Yüksek lisans tezi yönetmek (Tamamlanmış)
C2. Ders Verme
C2.1. Ön lisans, Lisans, lisansüstü, tıpta uzmanlık öğrencisi dersi dahil
C2.1.1. BTB1032017251, Matematik, Ordu Üniversitesi, Fatsa Deniz Bilimleri Fakültesi /
Balıkçılık Teknolojisi Mühendisliği / Lisans, 2022-2023.
C2.2. Staj kurulu ve/veya ders kurulu başkanlığı/yıl
C2.3. Koordinatörlük/yıl
C3. Danışmanlıklar
C3.1. Ön lisans- lisans öğrenci danışmanlığı, sınıf danışmanlığı
C3.2. Lisansüstü ders danışmanlığı
D. DİĞER BİLİMSEL VE SANATSAL ETKİNLİKLER
D1. Toplantı Etkinlikleri
D1.1 Uluslararası
D1.1.1. Sempozyum ve kongre gibi etkinliklerde
D1.1.1.2. Bilim kurulu üyeliği
D1.1.1.3. Düzenleme kurulu üyeliği
D1.1.1.3.1. 11th International Eurasian Conference on Mathematical Sciences and
Applications, İstanbul, Turkey, 29.08.2022-01.09.2022.
D1.2. Ulusal
D1.2.1. Ulusal sempozyum ve kongre düzenlenmesi gibi etkinliklerde
D1.2.1.3. Düzenleme kurulu üyeliği
D6. HAKEMLİK
D6.1. SCI (Science Citation Index)- Expanded kapsamındaki dergilerde hakemlik
D6.1.1. Applied Mathematics & Information Sciences,2021.
D6.1.2. Complexity, 2022.
D6.1.3. Engineering Computations, 2023.
D6.1.4. Advances in Mathematical Physics, 2023.
D6.1.5. Demonstratio Mathematica, 2023.
D6.2. Yukarıdaki indekslere girmeyen diğer uluslararası dergilerde hakemlik
D6.2.1. Conference Proceeding of Science Technology, 2020.(4)
D6.2.2. Communications in Advanced Mathematical Sciences, 2020.(1)
D6.2.3. Konuralp Journal Mathematics (KJM), 2021.(1)
D6.2.4. Universal Journal of Mathematics and Appications, 2020, 2021,2021.(3)
D6.2.5. Maltepe Journal of Mathematics, 2021.(1)
D6.2.6. Mathematical Sciences and Applications E-Notes, 2022,2022,2023.(3)
D6.2.7. Fundamental Journal of Mathematics and Applications, 2023.(1)
D6.2.8. Journal of New Theory,2022.(1)
D6.2.9. El-Cezeri,2023.(1)
D6.2.10. İnternational Electronic Journal of Geometry,2023.(1)
D6.3. Ulusal hakemli bilimsel dergilerde
D6.3.1. Erzincan Fen Bilimleri Enstitüsü Dergisi, 2020,2021.(2)
D6.3.2. Ordu University Journal of Science and Tecnology, 2020.(1)
D6.3.3. Karatekin Üniversitesi Fen Fakültesi Dergisi,2022.
D6.3.4. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi,2023.
D7. EDİTÖRLÜK
D7.2. Dergiler
D7.2.1. SCI (Science Citation Index) Expanded kapsamındaki dergilerde
editörlük
D7.2.2.Yukarıdaki indekslere girmeyen diğer uluslararası dergilerde editörlük
D7.2.2.1. Conference Proceeding of Science Technology, 2019
D7.2.2.2. Fundamental Journal of Mathematics and Applications, 2023
D7.2.2.3. Universal Journal of Mathematics and Applications, 2023
D7.2.3. Ulusal hakemli bilimsel dergilerde editörlük
D8. YURT DIŞI DENEYİMİ
D8.1. Bilimsel etkinlikler için yurt dışında bulunmak (Burslar hariç)
E1. ÖDÜLLER
E1.1. Bilim Alanında Ödüller
E1.1.2. Ulusal
E1.1.2.1. Bilimsel kuruluşlarca verilen bilim, hizmet ve teşvik ödülleri
1. Üstün Başarı Belgesi, Fatsa Kaymakamlığı, 2022.
2. Başarı Belgesi, Millî Eğitim Bakanlığı, 2022.
3. Başarı Belgesi, Millî Eğitim Bakanlığı, 2022.
4. Başarı Belgesi, Fatsa Kaymakamlığı, 2020.
5. Ödül Belgesi, Ordu Valiliği, 2018.
6. Üstün Başarı Belgesi, Fatsa Kaymakamlığı, 2018.
7. Başarı Belgesi, Fatsa Kaymakamlığı, 2017.
8. Başarı Belgesi, Fatsa Kaymakamlığı, 2015.
9. Başarı Belgesi, Kabataş Kaymakamlığı, 2014.
10. Takdir Belgesi, Kabataş Kaymakamlığı, 2010.
11. Aylıkla Ödüllendirme Belgesi, Millî Eğitim Bakanlığı, 2009.
12. Teşekkür Belgesi, Kabataş Kaymakamlığı, 2009.
13. Teşekkür Belgesi, Kabataş İlçe Milli Eğitim Müdürlüğü, 2009.
14. Terfi Ödül Belgesi, Milli Eğitim Bakallığı, 2009.
15. Takdir Belgesi, Kabataş Kaymakamlığı, 2008.